
Customized Program Mutation
(aka Mutation analysis for the real world:

Effectiveness, efficiency and proper tool support)

René Just

UMass, Amherst
Laboratory of Advanced Software Engineering Research

March 13, 2017

A quick poll

What is a good mutation score?

A quick poll

What is a good mutation score?

~100% is good if the mutants are good proxies for real faults.

Everything else is meaningless: the mutation score is heavily
inflated due to a high degree of redundancy.

Big picture: the past, the present, and the future

0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 0 1 0 1 1 0
0 1 0 0 0 1 1

0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 0 1 0 1 1 0
0 1 0 0 0 1 1

0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 0 1 0 1 1 0
0 1 0 0 0 1 1

0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 0 1 0 1 1 0
0 1 0 0 0 1 1

Present: generic
program mutation

Past: manual
fault seeding

ROR, COR
AOR, …

Problem: not all mutants are equally strong, and
program context affects mutant utility.

Big picture: the past, the present, and the future

0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 0 1 0 1 1 0
0 1 0 0 0 1 1

0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 0 1 0 1 1 0
0 1 0 0 0 1 1

0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 0 1 0 1 1 0
0 1 0 0 0 1 1

0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 0 1 0 1 1 0
0 1 0 0 0 1 1

Present: generic
program mutation

Past: manual
fault seeding

ROR, COR
AOR, …

Solution: customize program mutations to program context.

Big picture: the past, the present, and the future

0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 0 1 0 1 1 0
0 1 0 0 0 1 1

0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 0 1 0 1 1 0
0 1 0 0 0 1 1

0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 0 1 0 1 1 0
0 1 0 0 0 1 1

0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 0 1 0 1 1 0
0 1 0 0 0 1 1

0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 0 1 0 1 1 0
0 1 0 0 0 1 1

0 1 0 0 0 1 1
1 1 1 0 0 1 0
0 0 1 0 1 1 0
0 1 0 0 0 1 1

Future: customized
program mutation

Present: generic
program mutation

Past: manual
fault seeding

ROR, COR
AOR, …

ROR, COR
AOR, …

Some terminology

Mutation operator vs. mutation operator group

lhs < rhs lhs != rhs

lhs < rhs lhs <= rhs

lhs < rhs ...

ROR

Some terminology

Mutation operator vs. mutation operator group

lhs < rhs lhs != rhs

lhs < rhs lhs <= rhs

lhs < rhs ...

ROR

An effective mutant:
● is coupled to one or more real faults
● is NOT equivalent
● is NOT dominated by other mutants
● is NOT redundant or trivial

High-level goal: effective mutation operators

High-level goal: effective mutation operators
An effective mutation operator
generates a large ratio of
non-equivalent, non-trivial,
fault-coupled dominators.

Fault-coupled mutants

● Mutants are not similar to real faults.
● BUT most real faults are coupled to some mutants.
● Number of mutants increases superlinear when

fault-coupling is increased.

Gopinath et al., ISSRE’14, Pearson et al., ICSE’17, Just et al., FSE’14

Coupled real faults

mutants

Is selective mutation the solution?

No free lunch
● No selection strategy for mutation operator groups

works equally well for all programs.

Program context matters!

 Zhang et al., ICSE’10, Gopinath et al., ICSE’16, Kurtz et al., FSE’16

Program context: motivational example (1)

public double getAbsAvg(int[] nums) {
 double avg = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 1) {
 avg -= (double)nums[i] / nums.length;
 } else {
 avg += (double)nums[i] / nums.length;
 }
 }
 return avg;
}

Original program

Program context: motivational example (1)

lhs < rhs lhs != rhs
public double getAbsAvg(int[] nums) {
 double avg = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 1) {
 avg -= (double)nums[i] / nums.length;
 } else {
 avg += (double)nums[i] / nums.length;
 }
 }
 return avg;
}

Original program Mutation operator

Program context: motivational example (1)

lhs < rhs lhs != rhs

equivalent mutant
dominator mutant

public double getAbsAvg(int[] nums) {
 double avg = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 1) {
 avg -= (double)nums[i] / nums.length;
 } else {
 avg += (double)nums[i] / nums.length;
 }
 }
 return avg;
}

Context: different kinds of lexically enclosing statements (for vs. if)

Original program Mutation operator

Program context: motivational example (2)

0 -1
public double getAbsAvg(int[] nums) {
 double avg = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 1) {
 avg -= (double)nums[i] / nums.length;
 } else {
 avg += (double)nums[i] / nums.length;
 }
 }
 return avg;
}

Original program Mutation operator

Program context: motivational example (2)

non-trivial mutant
trivial mutant

0 -1
public double getAbsAvg(int[] nums) {
 double avg = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 1) {
 avg -= (double)nums[i] / nums.length;
 } else {
 avg += (double)nums[i] / nums.length;
 }
 }
 return avg;
}

Context: different data types (double vs. int)

Original program Mutation operator

Program context: motivational example (3)

lhs < rhs lhs <= rhs
public double getAbsAvg(int[] nums) {
 double avg = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 1) {
 avg -= (double)nums[i] / nums.length;
 } else {
 avg += (double)nums[i] / nums.length;
 }
 }
 return avg;
}

Original program Mutation operator

Program context: motivational example (3)

lhs < rhs lhs <= rhs

trivial mutant
dominator mutant

public double getAbsAvg(int[] nums) {
 double avg = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 1) {
 avg -= (double)nums[i] / nums.length;
 } else {
 avg += (double)nums[i] / nums.length;
 }
 }
 return avg;
}

Context: different kinds of operands (variable vs. literal)

Original program Mutation operator

Program context: summary

● Program context affects mutant utility
○ Utility of mutation operators differs, even within a single mutation

operator group (e.g., ROR).
○ Utility of a mutation operator differs, even within a single method.

● Different dimensions of program context
○ Kind of lexically enclosing statement
○ Kind and data type of operator and operands
○ Scope and visibility
○ Coding style and syntactic sugar
○ ...

Mutation operators need to be customized to program context!

Customized program mutation

Modeling program context using the AST

● The abstract syntax tree
(AST) provides relevant
context information for:
○ Mutated nodes
○ Parent nodes
○ Children nodes

● Can be augmented with
project-specific context
information:
○ Coding guidelines

Some promising results

● “Fresh out of the oven”

● Preliminary study
○ 100,000 mutants (5 open source projects)*.
○ Approximation of equivalent/dominator/trivial mutants,

using thorough test suites*.

● Comparison of tree-based classifiers for mutant utility
○ Mutation operator groups
○ Mutation operators
○ Program context

*http://www.defects4j.org

Classifiers for mutant utility (non-equivalent)
Perfect prediction

Better prediction

Classifiers for mutant utility (non-equivalent)

● Mutation operator
group is marginally
better than random.

● Program context
improves over
mutation operator.

● Similar results for
trivial mutants and
dominator strength.

Error rate of 3-dim context classifier (non-equivalent)

Error rate of 3-dim context classifier (non-equivalent)

● Training error
shows room for
improvements.

● Overfitting is NOT
(yet) a problem.

● Similar results for
trivial mutants and
dominator strength.

Recall the high-level goal

Goal: generate a large ratio
of non-equivalent, non-trivial,
fault-coupled dominators.

Effectiveness: mutation operator groups

Effectiveness: mutation operators

Effectiveness: mutation operators + program context

Customized program mutation

good

badugly

bad

Customized program mutation

good

badugly

bad

Consider 4th dimension (fault-coupling) to determine thresholds!

● Generate dominator
mutants.

● Don’t generate
equivalent mutants.

● Avoid redundant
mutants.

● Avoid trivial
mutants.

Tool support

class A {
 ...
}

Major: overview

Just et al., ASE’11, ISSTA’14
http://www.mutation-testing.org

class A {
 ...
}

0 1 0 0 0
1 1 1 0 0
0 0 1 0 1

Compiler

class A {
 ...
}

class A {
 ...
}

Embedded mutants

Source code mutants

Why compiler-integrated mutation?
● Orders of magnitude faster than

source code mutation.

● Mutate what the developer actually
wrote (no desugared/simplified code).

Major: customized program mutation

Just et al., ASE’11, ISSTA’14
http://www.mutation-testing.org

class A {
 ...
}

0 1 0 0 0
1 1 1 0 0
0 0 1 0 1

Compiler
Embedded mutants

Acknowledgments

Bob Kurtz Paul Ammann

Huzefa
Rangwala

Jeff
Offutt

Andrew
McCallum

Miltos
Allamanis

Customized program mutation

● Effectiveness of mutation operators
differs even within operator groups

● Program context affects mutant utility

● Different dimensions of program context

http://www.mutation-testing.org http://www.defects4j.org

http://www.mutation-testing.org
http://www.defects4j.org
http://www.mutation-testing.org

