
Rehabilitating
equivalent mutants as
static anomaly detectors
in software artifacts

Paolo Arcaini1, Angelo Gargantini2,
Elvinia Riccobene3, Paolo Vavassori2

1 Charles University in Prague, Czech Republic

2 University of Bergamo, Italy

3 University of Milan, Italy

Rehabilitating equivalent mutants

M
u

ta
ti

o
n

2
0
1
5

Angelo Gargantini - Rehabilitating equivalent mutants as static anomaly detectors in software artifacts

EQUIVALENT

MUTANT

In this work:

exploring the positive side of

equivalent mutants

Equivalent mutants are seen as an

inconvenience:

• considered one of the main causes

why mutation testing is seldom

used in practice

• several attempts try to eliminate

or to avoid them

Software (static) anomalies

• Software anomaly [IEEE] Any condition that deviates
from the expected based on requirements
specifications, design documents, user documents,
standards, etc. or from someone’s perceptions or
experiences

• We focus on static anomalies, i.e., anomalies that
can be removed without changing the “meaning” of
the artifact
 Static anomalies regard the structure of the artifacts and

they relate to qualities that may be statically measured

• Is it possible to define static
anomalies using equivalent mutants?

M
u

ta
ti

o
n

 2
0
1
5

Angelo Gargantini - Rehabilitating equivalent mutants as static anomaly detectors in software artifacts

findremove

Defining anomalies in terms of
equivalent mutants

• Assuming
 a quality Q over artifacts and that Q induces a partial order

(of better quality) >𝑄

 possible to define and check equivalence ≡ between artifacts

M
u

ta
ti

o
n

 2
0
1
5

Angelo Gargantini - Rehabilitating equivalent mutants as static anomaly detectors in software artifacts

Static anomaly. Given an artifact A and its mutation 𝐴′, if 𝐴′

is equivalent to A but 𝐴′ >𝑄 𝐴, then A contains a static

anomaly. The anomaly is the difference between 𝐴′ and A

A
quality

A′
quality

equivalent ≡
ANOMALY

Mutation operators as anomaly
detectors and removers

• Finding anomalies:

1. Build a mutation 𝐴′ for 𝐴

2. Compute their qualities 𝑄𝐴 and 𝑄𝐴′

3. Check the equivalence between 𝐴′ and 𝐴

IF 𝑄𝐴′ > 𝑄𝐴 and 𝐴′ ≡ 𝐴

THEN anomaly found (and removed)

Mutation operators as anomaly detectors

M
u

ta
ti

o
n

 2
0
1
5

Angelo Gargantini - Rehabilitating equivalent mutants as static anomaly detectors in software artifacts

Thesis it is possible to use a suitable mutation

operator that detects and removes anomalies

Ingredients for an anomaly detector

• In the paper many examples that confirm our thesis

• For every example:

M
u

ta
ti

o
n

 2
0
1
5

Angelo Gargantini - Rehabilitating equivalent mutants as static anomaly detectors in software artifacts

Thesis it is possible to use a suitable mutation

operator that detects and removes anomalies

Anomaly Quality

Mutation

operator

Equivalence

checking

Source code

• Anomaly: (dead code) DD - A recently defined variable is
redefined

• Quality: code compactness

• Mutation operator: Statement deletion operator (SDL)

M
u

ta
ti

o
n

 2
0
1
5

Angelo Gargantini - Rehabilitating equivalent mutants as static anomaly detectors in software artifacts

public int m(int b) {
int a;
a = 2;
a = b;
return a;
}

public int m(int b) {
int a;

a = b;
return a;
}

SDL

≡

• Equivalence checking: Very hard. There are several
attempts to automatize the solution of this problem.
Some incomplete solutions are acceptable (e.g. Papadakis et al.’s work at
ICSE2015)

Boolean expressions

M
u

ta
ti

o
n

 2
0
1
5

Angelo Gargantini - Rehabilitating equivalent mutants as static anomaly detectors in software artifacts

• Anomaly: redundant conditions

• Quality: simplicity (1/ # conditions)

• Mutation operator: Missing Variable Fault (MVF)

𝑥 ≤ 10 ∧ 𝑥 ≤ 5 𝑥 ≤ 5MVF

≡

• Equivalence checking: simple with SAT/SMT – taking
into account constraints can be challenging

Feature models

M
u

ta
ti

o
n

 2
0
1
5

Angelo Gargantini - Rehabilitating equivalent mutants as static anomaly detectors in software artifacts

• Anomaly: false optional: if a feature is marked as
optional but it is present in all the products of the FM

• Quality: solvability,
#mandatory features

#features

• Mutation operator: Optional To Mandatory (OTM)

OTM

≡

• Equivalence checking: Translation to SAT

Other examples (not in the paper)

• We found that also for other formalisms equivalent
mutants can be used to detect static anomalies

• NuSMV model checker models
• Anomaly: vacuity
• Equivalence checking: using NuSMV itself
• See:

 Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene: A
model advisor for NuSMV specifications. ISSE 7(2): 97-107
(2011)

• Combinatorial interaction testing models
• Anomaly: vacuity
• Equivalence checking: SMT solver
• See:

 Paolo Arcaini, Angelo Gargantini, Paolo Vavassori,
Validation of Models and Tests for Constrained
Combinatorial Interaction Testing. ICST Workshops 2014

M
u

ta
ti

o
n

 2
0
1
5

Angelo Gargantini - Rehabilitating equivalent mutants as static anomaly detectors in software artifacts

Not all the mutation operators are equal
Some mutation operators

1. may both decrease the quality and produce a non-
equivalent mutant – both quality and equivalence must
be checked

2. always increase the quality but can produce non-
equivalent mutants – equivalence must be checked
 Example: Statement Deletion mutation operator (SDL) always

improves code compactness but may change the behavior

3. always produce equivalent mutants, but they may
decrease the quality – quality must be measured
 Example: Refactoring produces an equivalent mutant but must be

used in a way that increases the quality

M
u

ta
ti

o
n

 2
0
1
5

Angelo Gargantini - Rehabilitating equivalent mutants as static anomaly detectors in software artifacts

Goal: mutation operators applications that

guarantee equivalence and better quality

Conclusions

• Exploring the positive side of equivalent mutants

• Is it possible to define static anomalies using
equivalent mutants?

M
u

ta
ti

o
n

 2
0
1
5

Angelo Gargantini - Rehabilitating equivalent mutants as static anomaly detectors in software artifacts

Thesis it is possible to use mutation operators

to detect and remove anomalies

Examples: source code, Boolean expressions, feature

models, ….

