Definition and Evaluation of Mutation Operators for GUI-level Mutation Analysis MUTATION 2015

Rafael Oliveira¹, Emil Alégroth², Zebao Gao³, Atif Memon³

¹University of Sao Paulo – USP/ICMC
 ²Software Eng. and Tech. – Chalmers University
 ³Dep. of Computer Science – University of Maryland (UMD)

Graz/Austria April 12, 2015

Agenda

Introduction and Conceptual Aspects

- GUI(Graphical User Interface)-based applications;
- Mutation testing;
- Mutation operators for GUI-based applications;
- GUI particularities and GUI testing.
- Mutation Operators for GUI-level
 - Removing, Adding, and Modifying.
- Empirical Evaluation
 - Research Questions (RQs);
 - Research strategy.
- Result Discussion and Final Remarks
 - Answers to Research questions;
 - Quantitative and qualitative analysis;
 - Discussion and threats to validity;
 - Final remarks.

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction Conceptual aspects

Introduction – Context

- Graphical User Interface (GUI) based applications
 - Interaction between underlying code and users;
 - "Events": mouse clicks, mouse drags, keyboards shortcuts or commands, object manipulation, etc;
 - GUI testing: limited, non-generic strategies, specific tools.
- Mutation testing
 - Observing the program's behavior against slightly modifications;
 - May support the evaluation of new GUI testing strategies;

Introduction and Conceptual Aspects

Mutation Operators for GUI-level Empirical Evaluation Result Discussion and Final Remarks Introduction Conceptual aspects

Introduction

- Traditional Mutation Operators are no effective for GUI-level testing.
- What is the necessity?
 - Special Mutation Operators;
 - MOs acting across widgets, properties (and values);
 - MOs changing GUI appearance;
 - MOs changing GUI states.
- This paper presents:
 - 18 "GUI-based" MOs;
 - A framework for automating the generation of these MOs;
 - Two empirical analysis on the fault-seeding effectiveness of the proposed MOs.

Introduction and Conceptual Aspects

Mutation Operators for GUI-level Empirical Evaluation Result Discussion and Final Remarks Introduction Conceptual aspects

Conceptual aspects

- GUI-based applications
 - Event-based;
 - GUI States (Ws, P, V).
- GUI testing
 - First Generation tools;
 - Second Generation tools;
 - Third Generation tools;
 - Challenges: test cases modeled as a sequence of event;
 - Visual and underline-code faults.

Classes Classes – Removing Classes – Adding Classes – Modifying

MOs for GUI Level

- Three different classes:
 - removing;
 - adding; and
 - modifying code in the SUT.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Classes Classes – Removing Classes – Adding Classes – Modifying

MOs for GUI Level – Removing

#	Class	Mutant Operator	Acronym
1	خ	–Remove Existing Widget	REW
2	len	-Set Widget Invisible	SWI
3	Œ	-Remove Existing Listener	REL

Classes Classes – Removing Classes – Adding Classes – Modifying

MOs for GUI Level – Adding

#	Class	Mutant Operator	Acronym
4	5	-Add Identical Widget	AIW
5	ding	-Add Similar Widget	ASW
6	Ado	–Add Different Widget	ADW
7	1	-Add Another Listener	AAL

크

Classes Classes – Removing Classes - Modifying

MOs for GUI Level – Modifying

#	ClassMutant Operator	Acronym
8	-Expand/Reduce size of Windows and Widgets will Auto-adjust Their Sizes	EWWAR/ RWWAR
9	 Expand size of windows and widgets will not auto-adjust their sizes 	EWWNAR/ RWWNAR
10	-Reduce size of windows to hide widgets	RWHW
11	-Modify location of a widget to a proper location	MLWP
12	 –Modify location of a widget to a proper location –Modify location of a widget to edges of windows –Modify location of a widget to overlap with another 	MLWE
13	≥ other	MLWO
14	 Modify size of widgets 	MWS
15	 Modify appearance of widgets 	MWA
16	-Modify type of widgets	MWT
17	-Modify GUI library for widgets	MWL
18	 Expand/Reduce size of Windows and Widgets will Adjust their Sizes 	EWWAR/ RWWAS

Oliveira et.Al. 2015 – Mutation Operators for GUI-level

크

Research Questions and Research Strategy Pilot experiment: Java Swing Calculator Proof-of-concept: real-world complex GUI-based OSS Analysis and evaluation of properties

イロト イヨト イヨト イヨト

Emp. Evaluation – Research Questions

The study is designed to answer the following *Research Questions* (RQ):

- **RQ1:** Are the defined GUI-based MOs more effective on seeding faults associated to the GUI level than traditional MOs?
- **RQ2:** Is it possible to automate the generation of GUI mutants?
- **RQ3:** Is it possible to use these proposed GUI operators on a real-world GUI application?

Research Questions and Research Strategy Pilot experiment: Java Swing Calculator Proof-of-concept: real-world complex GUI-based OSS Analysis and evaluation of properties

・ロト ・日下・ ・ ヨト

Emp. Evaluation – Research Strategy

We have divided our study into three parts:

- A pilot experiment;
- A proof-of-concept;
- An analysis to evaluate the effect of the MOs on the GUI, regarding GUI testing.

Research Questions and Research Strategy Pilot experiment: Java Swing Calculator Proof-of-concept: real-world complex GUI-based OSS Analysis and evaluation of properties

< □ > < □ > < □

Pilot Experiment

• Goals to support answering RQ1 and RQ2;

- Evaluate the MOs' applicability and measure their efficacy;
- compare the GUI effect of designed MOs and traditional mutation operators.
- Strategy:
 - Choose a subject application (Java Calculator);
 - 2 Select three mutation operators from each class;
 - Outomate the generation of the mutants through the MOs;
 - Generate mutants for each MO we have selected;
 - Use MuJava to generate traditional method-level mutants for the same application (12 method-level MOs);
 - Manually analysis of the effects of the MOs on the GUI-level.

Research Questions and Research Strategy Pilot experiment: Java Swing Calculator Proof-of-concept: real-world complex GUI-based OSS Analysis and evaluation of properties

Effects of MOs for GUI

87 mutants were obtained (screenshots are available online)

80	Java Sv	ving Cal	culator		80 -	lava Swi	ng Calculato	r	
Eile He	lp .				Eile Help				
0 Backsp	ace		CE	C	0 Backsp	ace	Backspace	CE	С
7	8	9	1	sqrt	7	8	9	1	sqrt
4	5	6		1/x	4	5	6		1/x
1	2	3		%	1	2	3		%
0	+/.		+	-	0	+6-		+	-
(C) SI	WI e	effe	ct.	((d) A	SW e	ffec	t.

Figure: Four mutated instances of the Java Calculator.

Research Questions and Research Strategy Pilot experiment: Java Swing Calculator Proof-of-concept: real-world complex GUI-based OSS Analysis and evaluation of properties

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Effects of tradition method-level MOs

408 mutants were obtained (screenshots are available online)

Sea Java Swing Calculator					
Backs	space		CE	С	
7	8	9	1	sqrt	
4	5	6	•	1/x	
1	2	3		%	
0	+/-		+	-	

		10	~		
a) A	IO:	s ei	ffec	t.

😣 🖻 🐵 Java Swing Calculator									
	Eile Help								
0 Backsp	ace		CE	с					
7	8	9	1	sqrt					
4	5	6	•	1/x					
1	2	з	-	96					
0	+/-		+	-					

(b) AOIU effect.

	🗊 Java	Swing	Calcula	or			Swing	Calculat	or
jile <u>H</u> e	lp .				<u>File</u> He	lp .			
Backsp	ace		CE	C	Backsp	ace		CE	C
7	8	9	1	sqrt	7	8		sqrt	4
•	1/x	1	2	3	5	6	•	1/x	1
	%	0	+/-		2	3		%	0
+	-				+/-		+	- 1	

(c) COI effect.

(d) ROR effect.

Figure: Mutants of Java Calculator from traditional MuJava MOs.

Research Questions and Research Strategy Pilot experiment: Java Swing Calculator Proof-of-concept: real-world complex GUI-based OSS Analysis and evaluation of properties

・ロト ・日下・ ・ ヨト

Proof-of-concept: real-world application

- Goals to support answering RQ3;
 - Evaluate the MOs' applicability in real-world applications.
- Strategy:
 - Choose a real-world application (WEKA);
 - Studying its GUI code and selecting one of its GUIs to apply the proposed MOs;
 - Output Automatically generates the mutants;
 - Manually analyze the resulting mutants regarding their GUI effects and implication.

Introduction and Conceptual Aspects Mutation Operators for GUI-level Empirical Evaluation

Result Discussion and Final Remarks

Research Questions and Research Strategy Pilot experiment: Java Swing Calculator Proof-of-concept: real-world complex GUI-based OSS Analysis and evaluation of properties

・ロト ・日下・ ・ 日下

Original WEKA's GUI

😣 🖻 🗇 Weka Explorer	
Preprocess Classify Cluster Associate Select	attributes Visualize
Open fil Open U Open D Gene	erat Undo Edit Save
Filter	
Choose None	Apply
Current relation Relation: None Instances: None Attributes: None	Selected attribute Name: None Type: None Missing: None Distinct: None Unique: None
Attributes	
All None Invert Pattern	Visualize All
Status Welcome to the Weka Explorer	Log 🛷 x 0

Figure: WEKA's original pre-processing GUI.

Oliveira et.Al. 2015 – Mutation Operators for GUI-level MUTATION 2015

Research Questions and Research Strategy Pilot experiment: Java Swing Calculator Proof-of-concept: real-world complex GUI-based OSS Analysis and evaluation of properties

< 17 ▶

Mutants generated for WEKA

130 mutants were obtained (screenshots are available online)

😣 🗇 🗇 Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Visualize	
Open fil Open U Open D Generat Undo Edit	
Filter	
Choose None	Apply
Status	
Welcome to the Weka Explorer	Log 🛷 x 0

Figure: Mutant of WEKA generated from GUI-based MOs.

Oliveira et.Al. 2015 – Mutation Operators for GUI-level MUTATION 2015

Research Questions and Research Strategy Pilot experiment: Java Swing Calculator Proof-of-concept: real-world complex GUI-based OSS Analysis and evaluation of properties

Quantitative analysis and of evaluations

- Numbers of mutants, visual equivalent mutants, structural equivalent mutants, capacity of generating mutants, etc;
- A yes/no questionnaire to identify properties associated with the GUI generated from the MOs.

Table: Questionnaire – Properties of GUI-based MOs.

P1	Does it change the GUI appearance?
P2	Does it change the GUI model/structure in testing tools?
P3	Can it change the SUT's input behavior?
P4	Can it change the SUT's output behavior
P5	Does it create equivalent mutants?
	P5.1 – Structural equivalent mutants?
	P5.2 – Visual equivalent mutants?

Results Discussion Final Remarks

Results - Research Question 1

- RQ1: "Traditional MOs presented a mean of 11.27% of GUI fault seeding effect, i.e. useful GUI mutants. In comparison, GUI-based MOs presented a mean of 83.90%"
 - GUI-based MOs are more effective on seeding faults associated to the GUI level;
 - GUI-based MOs generate mutants able to represent more complete set of GUI-associated faults;
- Another issues:
 - Alive vs Dead mutants;
 - GUI effects;
 - Mutant equivalence;
 - Redundancy.

Results Discussion Final Remarks

RQ1 - Statistics - Traditional vs GUI-based MOs

trad. MO	# mut.	# dead/invalid	# alive	atistics on using traditiona # alive + no GUI eff.		# equiv.	"Good" Mut.	efficiency (%)
AOIS	183	17	166	17	149	135	14	7.65
AOIU	33	6	27	0	27	22	5	15.15
AORS	6	5	1	0	1	1	0	0.00
COI	25	1	24	0	24	19	5	20.00
LOI	44	11	33	0	33	26	7	15.91
ROR	92	5	87	0	87	72	15	16.30
AORB	16	0	16	0	16	16	0	0.00
COD	3	0	3	0	3	3	0	0.00
COR	6	0	6	0	6	6	0	0.00
total	408	45	363	17	346	300 (73%)	46	11.27
			Ste	atistics on using GUI-base	d mutation operators			
trad. MO	# mut.	# dead/invalid	# alive	# alive + no GUI eff.	# alive + GUI eff.	# equiv.	"Good" Mut.	efficiency (%)
	13	0	13	0	13	0	13	100
SWI	13	0	13	0	11	0	13	
SWI REL					11 13		11 0	100 100 0.00
SWI REL AIW	11	0	11	0	11 13 11	0	11 0 11	100 100 0.00 100
REW SWI REL AIW ASW	11 13 11 11	0	11 13 11 11	0	11 13 11 11	0 13 0 0	11 0 11 11	100 100 0.00 100 100
SWI REL AIW ASW ADW	11 13 11 11 11	0 0 0 0	11 13 11 11 11	0 0 0	11 13 11 11 11	0 13 0	11 0 11 11 11	100 100 0.00 100
SWI REL AIW ASW ADW MWS	11 13 11 11	0 0 0 0	11 13 11 11	0 0 0 0	11 13 11 11	0 13 0 0	11 0 11 11	100 100 0.00 100 100 100 100
SWI REL AIW ASW ADW MWS RWHW	11 13 11 11 11	0 0 0 0 0	11 13 11 11 11	0 0 0 0 0	11 13 11 11 11	0 13 0 0 0	11 0 11 11 11	100 100 0.00 100 100 100
SWI REL AIW ASW	11 13 11 11 11 11 10	0 0 0 0 0 0	11 13 11 11 11 10	0 0 0 0 0 0	11 13 11 11 11 11 10	0 13 0 0 0 0 0	11 0 11 11 11 10	100 100 0.00 100 100 100 100

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQC

Results Discussion Final Remarks

Results - Research Question 2

- RQ2: "We were able to generate semi-automated scripts to generate mutants for seven different MOs for the Java Swing GUI library ..."
 - Semi-automated: do not execute the mutant;
- Script's workflow:
 - Read the original;
 - Pind some target command;;
 - Replace, comment, or rejoin with other pre-defined code;
 - Save the modified version;
 - Sepeat steps 2 to 5 until reach the end of the file.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Results Discussion Final Remarks

Results - Research Question 3

- RQ3: "The GUI-based MOs behaved properly in a realworld complex GUI-based application ..."
 - 87 mutants generated for a GUI of WEKA;
 - We had no previously contact with WEKA's code;
 - WEKA has a highly documented source-code and well organized;
- The GUI properties were kept in more than 90% of the cases;

Results Discussion Final Remarks

Discussion

• Benefits on using GUI-based MOs:

- Mutants reflect directly on the GUI-level;
- Avoid equivalent mutants;
- Productivity in the GUI testing context.
- Threats to validity
 - Internal validity, external validity, construct validity, and conclusion validity.
- Mutation analysis and GUI testing: Future directions:
 - Need for standardization of approaches and strategies;
 - Implementation of effective tools.

Results Discussion Final Remarks

Final Remarks

- Traditional method-level MOs are not effective for GUI testing;
- This study presents an empirical analysis of the fault seedingeffectiveness of generic GUI-based MOs;
- 18 MOs specially designed for the GUI level of abstractions were proposed (GUI-based MOs);
- The main findings are:
 - GUI-based MOs more effective than traditional MOs for the fault-seeding process;
 - It is possible to implement supporting tools for GUI-based MOs;
 - GUI-based MOs are useful on real-world applications.

(日)