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Abstract—Semantic Mutation Testing (SMT) is a technique
that aims to capture errors caused by possible misunderstand-
ings of the semantics of a description language. It is intended to
target a class of errors which is different from those captured
by traditional Mutation Testing (MT). This paper describes
our experiences in the development of an SMT tool for the C
programming language: SMT-C. In addition to implementing
the essential requirements of SMT (generating semantic mu-
tants and running SMT analysis) we also aimed to achieve the
following goals: weak MT/SMT for C, good portability between
different configurations, seamless integration into test routines
of programming with C and an easy to use front-end.

Keywords-Semantic mutation testing; Mutation operator;
Unit test; Weak mutation testing; Eclipse plugin

I. INTRODUCTION

Mutation Testing (MT) is a powerful and flexible testing

technique [1], [2], [3], [4], [5], [6]. In traditional MT, simple

faults are injected into a program by making syntactical

changes with mutation operators. The resulting programs

are called mutants. Semantic Mutation Testing (SMT) was

recently proposed to tackle a specific type of mistakes [7],

[8]. The hypothesis behind SMT is that the faults introduced

by possible misunderstandings of the language used to

deliver software artifacts can be represented by mutating

the semantics of the language. In this paper, we introduce

an SMT tool under development for assessing the SMT

hypothesis, SMT-C. It is designed to be integrated into

the software engineering development process, easy-to-use,

flexible and with good portability.

There are different ways to implement semantic misun-

derstandings into a program [8]. The most intuitive way

is to simulate a semantic mutation by making changes

to the syntax of the description. The syntactical approach

was adopted in the development of SMT-C. Therefore,

like general MT tools, SMT-C introduces faults into a

C program, but mutants generated by SMT-C simulate

misunderstandings of the C semantics. Consequently, the

new tool has similar functionality to other MT tools for C

[9], [10], [11], [12], [13], but we had to implement SMT-C
from scratch since special requirements were demanded.

First of all, some semantic mutation operators for C

need more information from the source code than traditional

mutation operators. For example, in order to capture the mis-

understandings of Floating-Point (FP) types in C, it is neces-

sary to use the type information of variables and expressions

but this generally is not included in a basic Abstract Syntax

Tree (AST) [8]. Second, several scenarios in which SMT has

particular value have been given [8]. One of these scenarios

is porting of code because the same piece of code may

result in different behaviours with different configurations.

More specifically, for a pre-compiled programming language

such as C, the executables generated from the same piece

of source code may behave differently if they are compiled

with different compilers, run on different operating systems

or even compiled with the same compiler but different

optimisation options. To investigate the semantic differences

of a piece of C source code, the SMT tool should have the

ability to be run on different configurations. However, there

is generally a trade-off between portability and performance.

For example, to achieve better performance, a number of

MT tools adopted an approach that generates mutants from

intermediate forms of the programming language [14], [15],

[13]. This means the targeted source code is transformed into

an intermediate form before conducting the MT analysis.

For example, we considered building the SMT tool on

CIL [16] by which a piece of C code is first transformed

into CIL: a highly-structured, “clean” subset of C, and

many advanced transformation and analysis features are

then provided. However, there is a possibility that semantic

discrepancies are introduced in the transformation from C

code to CIL and then to executables. This is not ideal in

terms of SMT. Therefore, an aim in designing the new tool

was to avoid introducing possible semantic changes merely

because of the SMT process.

As we decided to develop a new tool for the assessment

of SMT, some other questions were also examined in the

development process.

• Can we implement weak MT/SMT for C?

• Can we integrated SMT into the daily development

routines of a C programmer?

We consider two aspects of the second question: is it possible

to merge the SMT with other widely applied test routines;

is it easy to integrated SMT of the C programming language
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Figure 1. CFG of unit testing

into a popular Integrated Development Environment (IDE)?

Finally, we came up with SMT-C which is the first tool

that does both traditional and weak SMT for C. It contains

a set of modules including an Eclipse-based front end; uses

Check [17] as a test harness and TXL [18] to generate the

semantic mutants.

The remainder of this paper is organised as follows. In the

next section, the Control Flow Graph (CFG) describing the

process implemented in SMT-C is eventually introduced.

The techniques used to implement important blocks in

the SMT-C CFG in Figure 3 are then discussed in the

following Sections III, IV and V. Section III describes the

experiences of generating semantic mutants based on TXL.

In Section IV, the advantages and issues of using Check
to harness SMT are discussed. A GNU debugger (GDB)

based implementation of Weak MT/SMT is then discussed

(Section V). In Section VI, the Eclipse front-end of SMT-
C is briefly introduced. Finally, we draw conclusions and

discuss the future work.

II. CFGS AND SMT-C
In this section, the overview of the implementation of

SMT-C is discussed. A comparison between CFGs of unit

testing, traditional MT and SMT-C is given to illustrate

that SMT-C, supporting both strong and weak SMT, can be

constructed by extending a general unit testing framework.

Unit testing is a process that checks the smallest testable

parts of a program. For C, unit testing usually involves

running tests on functions. A unit testing process generally

contains four operations which are listed as follows.

• (S1) Unit test cases are normally hand coded by soft-

ware engineers during the development process.

• (S2) Test cases are compiled into an executable together

with the source files containing functions under test.

• (S3) Unit test is run by starting the executable.

• (S4) Generally, the executable should output informa-

tion generated in the test process and log the test results.

The CFG of unit testing is given in Figure 1. using a

Flowchart style. Rectangles with the same index refer to the

same operation in all CFGs (Figures 1, 2 and 3). An index

with a ’ means that minor changes have been made to the

operation with the same index and without ’. For example,

operation S1 refers to the rectangle block with index 1.

In a CFG with Flowchart style, rectangle blocks represent

sequential operations and rectangle blocks with double-line

edges represent predefined operations.

Since SMT-C adopted the syntactical approach to simulat-

ing the semantic misunderstandings, semantic mutation op-

erators were developed to apply syntactic changes. Mutants

were produced by applying semantic mutation operators on

the targeted source code. The hypothesis of SMT is as

follows. Let T , E and M represent a test suite, a type of

semantic errors and a set of mutants generated by applying

a semantic mutation operator which simulates E. T has a

better ability to detect E if T can achieve a better mutation

score against M . The mutation score of T is the percentage

of mutants killed by T . From the control flow point of view,

there is no difference between the SMT approach used in

SMT-C and traditional MT.

For traditional MT, the original program and its mutants

are distinguished if they produce a different output on the

same test input [2], [19]. Or in other words, a test input kills
a mutant M of the original program N if M and N produce

different output when running with the test input. Generally,

the meaning of killing a semantic mutant is the same

as killing a traditional mutant. However, approximations

may be introduced in giving verdicts for specific semantic

mutations. For example, it may be necessary to approximate

the equivalence between results of FP calculations since the

semantics of FP calculation depend on a number of things

including the actual expression, the underlying hardware,

operating system, compiler, optimisation option used to

generate the executable and so on [20]. For example, the

source code in Listing 1 gave different results with different

configurations. It printed “Unexpected result” on a Linux

32 bit system compiled with GCC v4.4.5 and optimisation

level 0 and the difference between the two operands in the

conditional expression is about 5.551121E − 17; it printed

“Comparison succeeds” when the GCC optimisation level

was changed to 3 or when running on a Linux 64 bit system

compiled by GCC v4.3.5 with optimisation level 0.

Listing 1. Unexpected comparison results

1f l o a t a = 10 , b = 0 . 1 ;
2i f ( a ∗ b == 1)
3p u t s ( ” Comparison s u c c e e d s ” ) ;
4e l s e
5p u t s ( ” Unexpec ted r e s u l t ” ) ;
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Figure 2. CFG of Traditional MT

From the general unit testing CFG in Figure 1, a tradi-

tional MT CFG can be synthesised with extra operations.

Figure 2 shows a traditional MT control flow. We note that

most operations of unit testing CFG are reused on the right-

hand side of traditional CFG (S1→S2→S3→S7) because the

output generated from mutants need to be compared with

the output of the original program. To conduct MT, mutants

should be generated from the original source code (S5). For

each mutant, a new version of the program is synthesised

(S6), compiled with the test cases (S2) and run (S3). After

all mutants have been run with the given test cases, the

results are compared with the test results generated from

the original program. The mutation testing results are then

parsed and output (S7). In addition to the operations in

Figure 1, there are new operations in Figure 2: (S5) mutant
generation, (S6) generating a version and (S7) output MT
results. The CFG contains a loop around three operations:

S6, S2 and S3 in which S2 and S3 are from the unit testing

CFG. In other words, traditional MT repeats unit testing

for each mutant and compares results with the original unit

testing results.

Weak MT is an alternative to traditional MT (also called

strong MT). Traditional MT compares the program output

between the mutants and the original program. Weak MT,

in terms of C, checks the changes of the program status

immediately after the mutated expression or statement [21].

Therefore, it is desirable to implement weak MT in an

interpretive way. However, this is difficult for a pre-compiled

programming language as an independent interpreter may

be required. For example, the weak MT module of Mothra

was built on an interpreter of Mothra intermediate code of

Fortran [14], [22]. To investigated the fault masking and

equivalent semantic mutants problems, we were motivated

to implement the weak SMT feature into SMT-C. To the

best of our knowledge, there is not a weak MT tool sup-

porting programming language C. To avoided developing an

independent interpreter, GDB (7.0 onwards) was used as the

interpreter in SMT-C since it can be controlled by python

scripts in a batch mode [23]. The final CFG is thus given in

Figure 3 in which weak MT/SMT for C is included. There

are two extra operations, (S8) generate debugger scripts and

(S9) run test with GDB. There is a block with index S8’
because the scripts for running the original program and

mutants are slightly different.

The CFG in Figure 3 was implemented in SMT-C. SMT-
C was developed as a bundle of Eclipse platform so the

control flow is encapsulated in Java classes. To seamlessly

integrated with software engineers’ daily routines, SMT-C
was built upon Eclipse CDT (C/C++ Development Tooling)

which is a fully functional C and C++ IDE of Eclipse.

As we adopted TXL for the mutant generation and Check
for the test harness, most of operations were developed as

individual modules or delegated to third-party modules. The

responsibilities of the Java code in the plugin are to build

the control flow, prepare the input and parse the output

of the individual modules. In the following sections, our

experiences in the development of the important features of

the SMT-C CFG are discussed in detail.

III. SEMANTIC MUTANT GENERATION

Adopting a syntactical approach, 19 semantic mutation

operators were developed for C as shown in Table I. In

addition, seven traditional mutation operators (including

OAAN, SCRB, SBRC, STRP, STRI, SSWM and SSDL)

described in [24] were also developed to provide a compari-

son with semantic mutation operators [8]. In the 19 semantic

mutation operators, the first 13 operators were proposed in

[20] based on existing industry experiences on the possible

misunderstandings of the C programming language [25],

[26], [27]. The remaining 6 FP comparison (FPC) operators

in [20] were refined from two FPC operators implemented

in [8]: MFC E and MFC R. Basically, all FPC operators

find an FPC in a piece of source code and then change the

expression to a function call, for example fcmp mentioned

in Table I. The function being called introduces a tolerance
in the comparison. Here, tolerance is a threshold which

allows two FP numbers to be counted as equivalent if their

difference is smaller than the threshold. The FPC operators

is differentiated by the way that the tolerance is calculated

[20].

The technique used for the development of these operators

was TXL. It has been used for mutant generation before [11],
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Figure 3. CFG with Weak MT/SMT

[28]. TXL is a general source transformation language with

a long history [18]. A transformation process based on TXL

has two steps. The source code is first parsed as an AST with

its grammar and then a set of transformation rules written

in TXL can be applied.

The main reason that we chose TXL to implement our

semantic mutation operators is that TXL is easy and straight-

forward to use to make small changes to a piece of source

code. For example, the logic of operator SCRB, which

replaces jump statement ‘continue;’ with a ‘break;’, can

be implemented using several lines of TXL code with the

grammar given as follows [29]:

replace $ [jump_statement]
’continue _ [semi]

by
’break;

The other reason was that TXL is a general transforma-

tion tool which has the potential to support any form of

description with a BackusNaur Form (BNF) style grammar.

Refinement is one of the scenarios in which SMT has

particular value [8]. Considering a process where software

models are refined to source code, SMT may need to be

applied to the models to capture the misunderstandings of

the modelling language. We therefore intend to investigate

SMT for models and other forms of software descriptions.

Therefore, it appears likely that the TXL approach will be

more flexible than those depending on parsers for specific

languages since TXL applies to different description lan-

guages.

Although it is easy to implement TXL based mutation for

most of the traditional C mutation operators and a number

of C semantic mutation operators given in Table I such as

ASD and IMB, the implementation of semantic mutation

operators such as DIA F, FTA F and MFC E was more

complicated. For example, to implement MFC E which

replaces specific equivalence expressions by function calls,

an expression is qualified for the transformation if it is first

an equivalence expression and then the comparison has at

least one FP number operand. The first condition can be

implemented by searching the AST. However, to implement

the second condition, the type information of operands of

equivalence expressions needs to be inferred by applying a

set of inference rules based on the AST. As a result, for

such semantic mutation operators we developed a TXL type

inference library for C which has more than 1600 LoC.

The other issues include a parsing problem and a for-

matting problem. With the given grammar [29], TXL parses

most C source files. However, a small portion of C source

files with complex macros cannot be parsed. This is because

some strange C macros break the BNF grammar. In [20], we

reported that 9 out of 598 C source files of the nmath library
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Table I
SEMANTIC MUTATION OPERATORS

Operator Description

General semantic mutation operators [8]

AOR replace ‘=’ with ‘==’ in conditional statements
ASD remove additional semicolons after the condition ex-

pressions of if statements
LBC I add an else branch to an if statement without an else

branch
LBM I modify the last else if branch of an if statement to an

else branch
LBC C add a default branch to a switch statement without a

default branch
LBM C modify the last case of a switch statement to a default

branch
MFC E mutate the FPC operators in an equality expression
MFC R mutate the FPC operators in a relational expression
DIA F mutate the results of division/modulus of integers using

the floor method
DIA T mutate the results of division/modulus of integers using

the tail method

FTA F FP type truncation adjustment using the floor method
FTA T FP type truncation adjustment using the tail method
IMB inserting missing break statements into switch state-

ments

Semantic mutation operators for FPC [20]

MFC C introduce constant tolerance between comparison with
single precision FP numbers

MFC F introduce tolerance using fcmp function between com-
parison with single precision FP numbers

MFC H introduce tolerance using a hybrid algorithm between
comparison with single precision FP numbers

MDC C introduce constant tolerance between comparison with
double precision FP numbers

MDC F introduce tolerance using fcmp function between com-
parison with double precision FP numbers

MDC H introduce tolerance using a hybrid algorithm between
comparison with double precision FP numbers

of R software [30] were not parsed. The formatting problem

of the TXL based mutant generation means that mutants

generated by TXL are potentially formatted differently from

the original file. This is because the TXL output follows

the format defined in the grammar file. The properties of

a mutant, such as the changed expression and the changed

line number, are needed to run GDB based weak SMT and

showing the modification made in a mutant in comparison

view. A general diff program can be used to generate the

properties, if the original source code and the mutant share

the same format. Due to the formatting problem, it is thus

impossible to use diff to generate real differences between

a mutant produced by TXL and the original source code. In

addition, instead of saving a mutant as a piece of slightly

different source file, it is better to reserve the changes made

to the original code [31]. This means that all mutants can

be saved in one file with each mutant represented by a

‘difference’ record. This approach uses less storage and

provides clear difference information.

SMT-C inherited the parsing problem from TXL. Initially,

we did not repair it since this did not affect our research re-

sults [20]. However, the formatting problem has to be tackled

as the difference information is important for displaying the

changes of a mutant and generating weak MT/SMT scripts.

The following approach was used to solve the problem. All

pieces of source code are pre-formatted with TXL grammar

before mutation operators are applied so that mutants and the

original source code have the same format. A diff command

can then be used to generate difference records for mutants.

IV. HARNESS TESTING USING UNIT TESTING

FRAMEWORK

Unit testing is the earliest test for a piece of source code.

The aim of unit testing is to improve the confidence in indi-

vidual parts of a piece of software. In extreme programming,

unit testing is the central activity and used as a contract that

an individual part must satisfy. Traditionally, the harness of

unit testing has generally been hand coded. Writing and

running unit test cases are time consuming. Therefore, a

number of unit testing frameworks have been implemented

for simplifying the unit testing of C programs and are widely

used in software industry [17], [32], [33].

MT was generally regarded as a unit testing technique,

but most existing MT tools have their own styles of test

harness [9], [10], [11], [12], [13]. This means that software

engineers have to write new test cases and run MT in a

specific style. As a result, the unit test cases generated with

unit testing frameworks cannot be used in MT analysis. In

addition, a C program generally contains multiple source

files. Manually maintaining the configuration of such a

program is time consuming. Therefore, configure files which

automate maintenance routines are used to organise source

files into a project, for example, Autotools [34] and Eclipse

project files. To the best of our knowledge, there were no MT

tools that support the project scale of MT, let alone benefit

from the automatic features provided by the configuration

tools.

To improve the usability of our MT/SMT tool and inte-

grate it into the general software engineering process, we

chose to implement MT/SMT operations based on a general

unit testing framework. In this way, an MT/SMT process

can be seamlessly integrated into the unit testing routines.

The test harness of MT/SMT is delegated to the unit testing

framework. Test cases for MT/SMT are written in the same

style as the other unit test cases. Therefore, existing unit test

cases can be reused for MT/SMT.

Specifically, Check was selected as the unit testing frame-

work on which the MT/SMT operations of SMT-C is based.

Check is developed based on Autotools which contains Auto-
conf, Automake and Libtool. Autotools is a configuration tool

set which is popular in Free/Open source world. Autotools
automates the troublesome configurations in development

of cross-platform software, for example checking whether
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dependent libraries are installed and generating proper pre-

processor directives which describe the underlying system

for compilers. In addition, it provides a consistent and easy

way for users to build, test and install the software. For

example, to install software developed with Autotools, the

installation generally uses the following commands.

./configure
make
make install

As a result, SMT-C was not implemented with its own test

harness and project configuration. The loop structure (around

S6, S1 and S2) in Figure 2 shows that building the mutants

and running tests are reused operation in the unit testing

CFG given in Figure 1. As SMT-C supports the project

scale mutation, before building such a mutant, S6 (generate

a version) is conducted: this refills the project source code

directory with the mutated source code.

To use Check in Eclipse CDT, the Eclipse Autotools plugin

is required. The Eclipse autotools plugin provides access to

Autotools from Eclipse platform and also introduces a wizard

to create a C project in Eclipse in Autotools style. SMT-C
depends on the Eclipse Autotools plugin and only applies

to the C projects created by the Eclipse Autotools plugin

wizard. In an Eclipse environment with SMT-C, once a C

project created for Autotools is activated, the menu provided

by SMT-C is also activated. An MT/SMT process described

in Figure 2 can then be started by clicking the corresponding

menu item in the Eclipse menu.

Writing a Check test case is easy and intuitive. It is piece

of code between a pair of predefined C macros as follows:

START_TEST (test_name)
{

/* unit testing code */
}
END_TEST

In addition to reusing the test harness of Check, our SMT

tool also benefits from advanced features of Check such as

run in fork mode, test fixture, multiple suites in one runner,

looping tests, test time-outs, determining test coverage, and

XML logging. These advanced features make SMT-C an

easy-to-use SMT tool in terms of test harness.

Check has many advantages, but the effort to learn it may

not be justified for a small software project. To properly use

Check, software engineers have to learn some pre-defined

macros and APIs (Application Programming Interface). It

is also required that software engineers are familiar with

Autotools which may be difficult to learn for a new pro-

grammer. The other problem is that Check is an extension

of Autotools, so it cannot be used independently, This is

also true for SMT-C which can only be used with Eclipse

with the Autotools plugin installed. We did not choose an

independent C unit testing frameworks such as [33] since it

was intended to develop SMT-C as an MT/SMT tool which

could be closely embedded into software engineers’ daily

routines in a unified style.

V. WEAK MT/SMT OF C PROGRAMMING LANGUAGE

The idea behind weak MT/SMT is to check the pro-

gram status immediately after the execution of the mutated

component. When running the same test suite on mutant

m, it is possible that m is weakly killed but not strongly

killed. To investigate the difference between weakly and

strongly killing of semantic mutants and fault masking,

SMT-C was implemented to support Weak MT/SMT. To

be more specific, SMT-C allows the status of a mutant and

the original program to be compared after the first execution

of the mutated statement. This type of weak MT is called

ST-WEAK/1 in [22].

Since weak MT checks the program status in the middle

of executions, it is more convenient to develop weak MT

based on an interpreter. This is because the interpreter can be

controlled to check/output the program status naturally [22].

For the compiled programming language C, an intuitive way

to automatically check the intermediate status of a program

is to insert probing statements after each components in

the original program and after the mutated component in

mutants [35].

SMT-C used an approach that controls an interpreter to

check/output intermediate program statuses. However, there

is not a native interpreter for C, so an advance debugger,

GDB, was used as the interpreter. The control flow of SMT-
C with Weak MT/SMT is given in Figure 3. Once the option

is set to run a Weak MT/SMT of the target function, the

control flow takes branches in which python scripts are first

generated (S8 and S8’) and then the original program and

mutants are executed by GDB (S9).

There are three issues in using GDB as the interpreter.

Debugging with GDB is often a manually controlled process.

However, recently, python scripting was introduced into

GDB 7.0. Debugging of a C program can then be automated

by a piece of python script. The other issue is that the

accessible program statuses from GDB are limited by the

debug information compiled into the executables. Therefore,

a premise to use the GDB approach is to compile the

executables with enough debug information. This generally

means that the “-g” option should be used when compiling

target functions. In terms of compiler options, it is also

necessary to be careful about the choice of optimisation

option “-O”. This is because optimisation options may

change the behaviour of resulted executables in specific

situations. For example, it has been shown that the same

piece of code generated different results when compiled

with different optimisation options [20]. Finally, there is a

performance issue when running programs with GDB. In our

experience, running executables with GDB is about ten times

slower than running the executable directly. However, this
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problem is less significant in SMT since semantic mutation

operators generated fewer mutants on average [8].

It transpired that the ST-WEAK/1 type of weak MT/SMT

was not difficult to implement based on the scripting feature

of GDB. Information regarding mutants is necessary for

generating weak MT/SMT scripts (S8 and S8’) such as

the affected statement and the line number of the changed

statement. Let us consider the process of using weak

MT/SMT with a set of n mutants. Running the piece of

script generated in S8 should output results that can be

compared with all output generated by n mutants in one run.

This is achieved by inserting breakpoints into the original

source code for all mutated lines of all n mutants. Generally,

multiple breakpoints should be inserted but the number of

breakpoints is usually less than n since different mutants

may change the same statement. In an execution of the script

with GDB, the program stops at the inserted breakpoints.

Once the program stops, the current statement is executed

with the next command of GDB and then the value of the

left-hand side of the statement is logged or output. The

script continues to run until the termination of the program.

Running scripts in S8’ generates the mutant output if the

execution goes through the changed statement. The second

piece of script just inserts a breakpoint at the mutated

statement. Once the program stops at the breakpoint, the

script logs or outputs the value of the left-hand side of

the statement and exits the debugging process. Finally, the

output from the mutants is compared with the output of the

original program in block Output mutation test results (S7’).
The script for executing a mutant only contains a few lines

of code. The main statements are as follows.

python
...
gdb.execute("handle SIGFPE nostop")
...
gdb.execute("run")
gdb.execute("next")
...

Some statements are skipped since they depend on the

mutant information. For example, line 2 should be a state-

ment that inserts a breakpoint at the line where the change

is made to generate the mutant. The position of the break-

point changes for different mutants. Let us suppose that a

breakpoint has been set up before line 4. In the piece of

script, the first line is to start python scripting in GDB batch

mode; line 3 tells GDB not to terminate when an error signal

raised by an erroneous arithmetic operation is received; lines

5 and 6 run the program and execute the current statement.

Line 3 is necessary since by default GDB terminates the

debugging process even when receiving a benign system

signal. However, this often is not true in a real execution. The

effect of line 5 is that the program stops at the breakpoint

which should have been set up at line 3 if the test input

triggers a path which goes through the mutated statement.

After the execution of line 6, there are some statements

to record the value of the left-hand side of the mutated

statement.

Another advantage of using GDB is that it is independent

of compilers and languages. Therefore, it is possible to

use the same approach to run weak MT/SMT to check the

semantic misunderstandings introduced by different compil-

ers (Intel C compiler, Microsoft C compiler etc.) and on

different programming languages including Ada, C, C++,

Objective-C, Pascal and Java which are supported by GDB.

This improves the portability of the tool and lead to a more

flexible architecture.

VI. ECLIPSE BASED FRONT-END

Sections III, IV and V described the most important

operations in the CFG given in Figure 3. The individual

operations were initially implemented as executables or

command lines calling third-party software. For example,

generating mutants from a given source file, foo.c, with

mutation operator DIA F, can be achieved as follows:

txl foo.c op.dia_f.txt -o mut_foo.c

In this command, op.dia f.txt is the TXL transformation rule

which generates mutant mut foo.c from foo.c. With all in-

dividual operations in Figure 3 implemented, functionalities

provided by them need to be presented to software engineers

with a unified interface. In this section, the approach used

to implement the interface of SMT-C is discussed.

A number of approaches can be chosen to automate SMT

control flow. For example, shell scripts based commands is

a good choice which is light-weighted and flexible. In the

development of SMT-C, we used a bottom-up approach.

With the components being prepared, to check whether

they can work together, we used shell scripts to test the

integrated functions. Actually, MT/SMT analysis can still be

run manually by calling these test scripts with the modules

of SMT-C. However, a GUI based approach can be more

user-friendly, especially for new programmers. For example,

a GUI approach saves efforts on memorising the individual

commands and their options. Other than implementing the

CFG given in Figure 3, the front-end of the tool should

also output useful information generated by each individual

operation including the mutated statement of a mutant, test

cases, original test results, and mutation test results. It can

be easier to present these pieces of information at the same

time using a GUI approach. Therefore, a GUI front-end was

developed for SMT-C.

As mentioned earlier, SMT-C was designed to be em-

bedded into daily routines of a software engineer. As many

C programmers use Eclipse CDT as their IDE and Eclipse

CDT supports Autotools, Check, and diff for comparison

between mutants and the original program, it was chosen as

the basis of the front-end of SMT-C. The front-end is thus
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Figure 4. GUI of SMT-C

developed as a plugin of Eclipse and written in Java. Several

classes were used to encapsulate the individual modules

and then these classes were assigned to individual handler

classes which can be attached to menu items and buttons

in the Eclipse main menu and viewers1. Above the classes
for encapsulating individual functionalities, there are two

classes which implement control flows of traditional and

weak MT/SMT, respectively.

To display the relevant information, SMT-C has four

viewers: the mutant viewer, the test viewer, the results

viewer and the console viewer. The upper part of Figure

4 shows the main window of SMT-C. The mutant viewer

is on the right-hand side of the main window in which the

generated mutants can be managed. The results viewer is

used to display the results of SMT including killed mutants,

mutation score and so on. The test viewer and the console

viewer are displayed separately below the main window.

Software engineers can use the test viewer to start SMT

and view the results of each test case that has been run.

The console viewer provides raw information generated by

individual commands. High-level features of Eclipse and

CDT have been reused in SMT-C. For example, the middle

of the main window of SMT-C in Figure 4 shows two

1Viewers are small windows in Eclipse GUI exclude the editor window.

mutants being compared and is implemented reusing the diff
module of Eclipse.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed our experiences regarding the

development of an SMT tool for C: SMT-C. In addition

to providing basic functionalities, we also tried to achieve

the following goals: Weak MT/SMT in C; good portability;

embedded into the daily routines of a C programmer;

an easy-to-use front-end. Although SMT-C is still under

construction, with the experiences we have, we argue that

the approach adopted in SMT-C is a promising method for

these goals.

For generating semantic mutants, we used TXL which

is a high-level transformation tool. The TXL approach has

no limitations on platform, compiler and specific language

format. This ensures that the mutant generation in SMT-
C is highly portable. In addition it applies to many other

languages including modelling languages. This flexibility is

important since we plan to investigate SMT for different

types of abstract description of software.

In designing the test harness of SMT-C, we used an ap-

proach based on a unit testing framework Check which is an

extension of Autotools. Two main goals were achieved. Auto-
tools enabled our tool to support a project scope MT/SMT; in
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contrast most other mutation tools were developed for single

source file programs. The other is that the use of Check
enables the seamless merging of unit testing and SMT. As

a result, given a set of Check style test cases, SMT can be

started by clicking one menu item.

To implement weak MT/SMT for C, we used an in-

terpretive approach. As C is a pre-compiled programming

language, there is no native C interpreter. The most recent

version of GDB was used as an interpreter. The advantage

is that it is easier than developing an independent interpreter

and potentially has better portability. However, this approach

has a performance issue. Despite this performance issue, it

satisfied our needs for analysis of ST-WEAK/1 style of SMT.

Finally, an Eclipse based front-end was provided for

organising the functionalities of SMT-C and presenting the

useful information generated in the MT/SMT analysis. This

approach provided an easy to use interface to those already

familiar with Eclipse IDE. In addition, it should facilitate

the integration of the MT/SMT into the daily routines of

developers.

We plan to make SMT-C open to download in the near

future.2 Before that, we will further refine the existing

functionalities, for example improving the way that mutants

are stored and implementing more functionalities such as the

other types of weak MT/SMT. Although, the performance of

SMT-C was not a significant problem for the experiments

that we have conducted, there is still a long way to reach

the industry standard. For example, SMT-C took hours to

finish the SMT experiments in [8]. The performance of the

tool should be carefully evaluated and then improved.
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