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Test Case Generation with Mutation Testing

How does mutation testing work?

1. Seed artificial faults.

2. Write test cases that catch the faults.

3. Collect the test cases in a database.
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The Problem

But: writing test cases that catch the faults is tedious [GSZ09]!
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A test case has to satisfy three conditions to catch a fault [DO91].

1. Reach the location of the fault.

2. Infect the program state when the fault is executed.

3. Propagate the infected state to an output.
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Help from Formal Methods?

Bounded Model Checking [BCCZ99]

I Given: a state-transition graph (model) and a safety property
I Search for a counterexamples of finite length k

Satisfiability Modulo Theories (SMT) [BHvMW09]

I Efficient decision procedure for constraint satisfaction
I Selects a specific background theory
I SMT solvers are implemented on top of SAT solvers
I Solving the constraints is NP-complete
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Test Case Generation with Formal Methods
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Use BMC to encode all paths up to length k

I Encode the program into formula fk
I Encode the mutant into formula f ′

k

I Assume equal inputs i, i′

I Assert different outputs o, o′

Use an SMT solver over bitvector theory
I Solve fk ∧ f ′

k ∧ (i = i′) ∧ (o 6= o′)

I A satisfying assignments is a test cases.
I The mutant is equivalent with respect to k if

the formula is unsatisfiable.

Functional equivalence
checking with respect
to a bounded model is
decidable!
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1. Seed faults into the compiler’s intermediate representation
I Independent from the front-end’s language
I Eases later translations!
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2. Construct a meta-mutant [UOH93] containing all faults
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3. Unroll loops k-times and encode the program as logic formula
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Simple Example

sum = 0;
for ( int u = 1; u < 3; ++u ){
__sum += u;
}

1. Consider a fragment of a C program.
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Simple Example

sum = 0;
for ( int u = 1; u < 3; ++u ){
__sum += u;
}

bb0 :
__r1 = load sum // = 0
__r2 = load u // = 1

bb1 :
__r3 = lt r2 , 3
__br r3 , label bb2 , label bb3

bb2 :
__r1 = add r1 , r2
__r2 = add r2 , 1
__br label bb1

bb3 :

2. Transform the C code into intermediate code.

7



Simple Example

sum = 0;
for ( int u = 1; u < 3; ++u ){
__sum += u;
}

bb0 :
__r1 = load sum // = 0
__r2 = load u // = 1

bb1 :
__r3 = lt r2 , 3
__br r3 , label bb2 , label bb3

bb2 :
__r1 = add r1 , r2
__r2 = add r2 , 1
__br label bb1

bb3 :

bb0 :
__r1 = load sum // = 0
__r2 = load u // = 1

bb1 :
__r3 = lt r2 , 3
__br r3 , label bb2 , label bb3

bb4 :
__r4 = load FAULT_ID
__r5 = eq r4 , 1
__br r5 , label bb5 , label bb6

bb5 :
__r1 = mul r1 , r2
__r2 = add r2 , 1
__br label bb1

bb6 :
__r1 = add r1 , r2
__r2 = add r2 , 1
__br label bb1

bb3 :

3. Seed faults and construct a meta-mutant.
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Simple Example

bb0 bb1 bb4

bb5

bb6

bb3

(Redraw the graph with less detail . . . )
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Simple Example

bb00 bb01
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err

u < 3?

4. Unroll the control flow graph (k = 1).
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Simple Example

bb00 bb01

bb03

bb04

bb05
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bb11 bb14
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bb21

err

u < 3?

Unroll again (k = 2).
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Simple Example

bb00 bb01

bb03

bb04

bb05

bb06

bb11 bb14

bb15

bb16

bb21 bb24

bb25

bb26

bb31

u < 3?

Unroll again (k = 3).
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Simple Example

5. Transform the unrolled meta-mutant into SSA form.
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Simple Example

bb0 :
__r1 = load sum // = 0
__r2 = load u // = 1

.

.

.

bb0 = true∧
bb0 → (r1 = sum ∧
r2 = u)∧
. . .

6. Encode the meta-mutant into a logic formula.
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Test Case Generation

I Given: the meta-mutant M and an unrolling bound k

I The meta-mutant is k-times unrolled and encoded twice into
bitvector formulae fk and f ′

k

I We constrain the fault id id = 0 in fk but keep the fault id in f ′
k

unconstrained
I We assert equal input variables and different output variables
I An SMT-solver incrementally solves fk ∧ f ′

k
I We collect a satisfying assignment as test case, constrain the

fault id, and re-solve the formula.
I When the formula becomes unsatisfiable, all undetect faults

are proved to be equivalent.
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Experimental Results

Table: Results of the test case generation with Boolector

Name Instr. Instr. Faults Test Cases Time
(Program) (Meta-

Mutant)
[s]

min 24 71 17 16 0.48
isl 20 80 19 18 0.14
fmin3 40 137 33 23 7.49
fmin5 58 203 49 37 34.38
fmin10 103 368 89 72 213.65
mid 52 194 46 43 6.82
tri 116 819 206 196 246.80

9



Experimental Results
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Figure: Detected faults for tri over time.
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Experimental Results
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Figure: Test case generation for benchmark tri over time.
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Conclusions & Future Works

I Our approach is complete with respect to the unrolling bound
1. It detects all non-equivalent faults in the unrolled model and
2. proves equivalence with respect to the bound of all undetected

faults

I We have not considered simulation, which improves runtime

I Under development:
I Support for pointers and arrays
I Case-Study
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Thank you for your attention!
Questions?
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