
Object-oriented mutation applied in
Common Intermediate Language programs

originated from C#

Anna Derezińska, Karol Kowalski

Institute of Computer Science
Warsaw University of Technology

www.ii.pw.edu.pl/~adr/

Outline

Object-oriented mutations
Common Intermediate Language
O-O mutations on CIL level
ILMutator system
Experiments
Conclusions

Object-oriented mutations

OO – misusing of class and object
interrelations
Locally interpreted or distributed over a
whole program, e.g. class hierarchy
Single instruction at high-level language
Several instructions at low-level language,
e.g. Common Intermediate Language
Advanced operators – more language-
related than standard (traditional)
mutation operators

Advanced operators for C#

C# 1.1 Specified 40 mutation operators including:
-analogous to Java adopted for C#

- with different specifications
- with different application scope

-for specific features of C#:
delegates, properties, indexers, override modifier

C# 2.0, 3.0,.. many new features not suitable for
mutation: sealed modifier, generics, partial
classes and methods, extension, anonymous
methods, .. (Many not applicable in the CIL)

Mutation tools for C#

Nester – simple mutation by use of
regular expressions
PexMutator – standard mutation operators
CREAM – parser based,
18 object-oriented, 8 standard mutation
operators (v3)
ILMutator – mutation operators in the
Intermediate Language of .NET originated
from C# code

Common Intermediate Language

Common Language Runtime (CLR) –
runtime environment of Microsoft .NET
Framework
Assembly = metadata + managed code
Managed code = Common Intermediate
Language (CIL)

Machine level language exploiting all
capabilities of CLR
Programs translated from C# use only
subset of these capabilities

Common Language Runtime

C# source file(s)

C# compiler

Managed module (CIL and
metadata)

Common Language Runtime

Operating System

O-O mutations on CIL level

PNC – new method call with child class type

OMR operator (Overloading
method contents change)

Pre: - Avoiding recursive call of methods
- At least one consistent combination of parameters

OMR operator – in CIL

.method private hidebysig instance
void count(int32 a, int32 b) cil managed

{ {
.maxstack 8 .maxstack 8
IL_0000: nop IL_0000: nop
IL_0001: ret IL_0001: ldarg.0
} IL_0002: ldarg.1

IL_0003: call instance void
Operators.ClassA::count(int32)
IL_0008: nop
IL_0009: ret

}

Class constructor - 3 sections in CIL

//C#
public class ClassB

{
private int a;
private int b = 1;

public ClassB()
{

a = 2;
}

}

….
.ctor() ….
{
// initialization of fields defined
in ClassB
e.g. a=0; b=1;
//constructor of the base class
or another constructor of this
class is called
//constructor body
e.g. a = 2;
}

Constructors changed by operators

JDC – C#-supported default constructor create
Pre: A non-parametric constructor is the only class
constructor
This constructor is deleted
CIL – 3rd section of the constructor is deleted
(= constructor without its body)

JID – member variable initialization deletion
private int a =5; private int a;
Initializations deleted from the 1st section of all
constructors
Restriction: only primitive types

O-O mutations on CIL level
JDC – C#-supported default constructor create

O-O mutations on CIL level
JID – member variable initialization deletion

IPC operator (Explicit call of
parent's constructor deletion)

Original C# code: Mutated C# code:
public class Vehicle
{ private int x;

public Vehicle() {...}
public Vehicle(int x)
{ this.x = x; }

}
public class Car:Vehicle
{ public Car(int y)

:base(y)
{...}

}

public class Vehicle
{ private int x;
public Vehicle() {...}
public Vehicle(int x)
{ this.x = x; }

}
public class Car:Vehicle
{ public Car(int y)

{...}
}

Pre: Base class defines its non-parametric constructor

IPC operator (Explicit call of
parent's constructor deletion)

Original CIL code: Mutated CIL code:
….
instance void .ctor(int32 b)
...
{
.maxstack 8
IL_0000: ldarg.0
IL_0001: ldarg.1
IL_0002: call instance void

Operators.Car::.ctor(int32)
………
}

….
instance void .ctor(int32 b)
…
{
.maxstack 8

IL_0000: ldarg.0
IL_0001: call instance void

Operators.Car::.ctor()

…………..
}

ILMutator system

Intermediate Language Mutator supports
mutation of programs in .NET
environment
Introduces standard and object-oriented
mutations in the intermediate code
derived from compiled C# programs using
Mono.Cecil library
User can view the original intermediate
code and the mutated code with
highlighted differences

ILMutator system

Execution of tests on the original and
mutated assemblies (NUnit)
Verification of mutated assemblies with
PEVerify tool (delivered with .NET
Framework)
Implements 4 standard and selected
object-oriented operators

ILMutator system - architecture

Assembly
visualisation

Test result
visualisation

Assembly
management

Test
management

Operator
management

PEVerify

DiffEngine

NUnit
Mono
Cecil

ILMutator system – during work

ILMutator system – test runner

Experiments – mutation operators

EOC – reference comparison and content
comparison replacement

IPC – explicit call of a parent’s constructor
deletion

JDC – C# supported default constructor
create

JID – member variable initialization deletion
OMR – overloading method contents change
PNC - new method call with child class type

0 mutants

Experiments - mutated assemblies

Program Size
[kB] LOC Classes Unit

tests
1 Castle.Dynamic

Proxy
76 5036 71 82

2 Castle.Core 60 6119 50 171

3 Castle.Micro
Kernel

112 11007 86 88

4 Castle.Wiondsor 64 4240 34 92

5 Nunit.framework 40 4415 37 397

6 NUnit.mock 20 579 6 42
7 NUnit.util 88 6405 34 211

8 NUnit.uikit 352 7556 30 32

Results – number of mutants

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

EOC IPC JDC JID OMR

Castle.DynamicProxy.dll Castle.Core.dll
Castle.MicroKernel.dll Castle.Windsor.dll
Nunit.framework.dll Nunit.mocks.dll
Nunit.util.dll Nunit.uikit.dll

Results – mutation score

CREAM system

Parser based CREAtor of Mutants
Applies standard and object-oriented
operators
Uses compilation and reflection
mechanisms
Tests mutants with unit test frameworks

Comparison with CREAM 2.0

0

50

100

150

200

250

Mutants'
number

EOC IPC JID

Generated and killed mutants

CREAM generated
ILMutator generated
CREAM killed
ILMutator killed

Comparison with CREAM 2.0

0

2

4

6

8

10

12

14

seconds

Average mutant's generation time
(including compilation time for CREAM)

CREAM 2.0 13 13,45 12,68
ILMutator 0,27 0,3 0,22

EOC IPC JID

Conclusions

Introducing mutations on the intermediate
language level – more efficient, faster
Mutated program doesn’t have to be
compiled
Identification of mutation locations - more
effort to implement
Lack of compilation - necessity of
correctness checking

Future work
More mutation operators
Other ways of generating and storing
mutants (e.g. metamutant)
Other methods of testing (not only unit
tests)
New versions of libraries (Mono.Cecil 0.9)
or other libraries (Microsoft.CCI) for
mutation injection
Better visualization of mutated code
(CIL<->C#)
Identification of equivalent mutants

Q&A

CREAM – main window

CREAM – original and mutated code

