
Open Challenges in 
Mutation Testing

Panel Discussion



Objectives

“In 2000, I thought we were 
finished with mutation.”



Objectives

• Why is mutation testing not done in 
industry? (Or is it?)

• Where is research leading to?

• Where should research be leading to?



Panelists

Mark Hampton Mark Harman Jeff Offutt



Panelists

Mark Hampton Mark Harman Jeff Offutt

4th Order Mutants?



Survey Results



Mutation testing in practice

• Mutation is mainly used for research 
experiments

• Equivalent mutants are not ignored

• Equivalent mutants are mainly detected 
manually

• Mutation researchers like their own tools?



Industry Acceptance

Tools

Scalability

Marketing

Equivalent mutants

Understandability

Data

Real faults

0 0,5 1 1,5 2 2,5 3



Industry Acceptance

• Lack of automatic test data generation

• Lack of cooperation between industry and 
academia

• Industry has many pressing problems

• Huge effort and costs compared to other 
techniques

• Benefits unclear for evolving systems



Research Challenges

Tools

Equivalent mutants

Real world projects

Efficiency

New operators

HOM

Languages

0 0,5 1 1,5 2 2,5 3



Research Challenges
• Test (data) generation

• Use mutation for other purposes such as 
repairing faults, automatic patching

• Developers don’t care how tests are built - 
they just want good tests

• Handle larger code with various features 
(databases, network, ...)



Mark Hampton
previously CTO & co-founder at Certess

Certess developed a Mutation Analysis tool.

Languages supported: VHDL, Verilog, SystemVerilog, C, C++
Company grew from 3 to 25 in 5 years

Sold to a much larger company in early 2009
Major clients: CISCO, Intel, Sony, Toshiba, Bosch etc



Open Challenges in 
Mutation Testing

 Some common assumptions need to be questioned 
(5 in this presentation)

 To be adopted MA needs to offer a convincing 
story regarding ROI



Assumption #1

 Don't assume test checking is based on golden 
results that are manually checked

 Lets assume the test environment is automated 

−an oracle exists

−e.g. model based testing



Assumption #2

 Killing a mutant should require a failing testcase

 If we change assumption #1 then this means the 
testcase includes an oracle and code for checking 
the expected results

 This means redefining strong mutation

 To include propagation through the test 
environment until the indication of a passing/failing 
testcase



Assumption #3

 Lets redefine the mutation analysis process to 
include humans interacting with the results

 no need to collect all the mutants status before 
using the information

 the order of the mutants is important

 the process for results analysis is important



Assumption #4

 Weak mutation is not a good solution to the 
performance issue

 the principle value of the Certess product is in 
finding mutants that are “weak” dead

 mutation is complimentary to coverage 
information 

 focus on the strengths of mutation compared to 
code coverage – finding problems in the 
propagation and detection of bugs



Assumption #5

 A mutation analysis metric, based on sampling, can 
be many orders of magnitude faster than the 
published results

 The Certess product provides a metric in a 
reasonable runtime even for large systems (100's 
of CPUs days of testcase execution) 



ROI 1/2

 Can an ROI perspective help with the adoption of 
MA in industry

 are we marketing the technology well ?

 which niche should be the entry point for 
software testing ? 

−where is the most pain ?



ROI 2/2

 Is mutation highlighting a more fundamental issue 
that industry is ignoring ?

 measuring the quality of testing should be a 
separate discipline from testing

− in the same way measuring that quality of the 
design has been specialized into testing

− should there be "qualifiers" in the same way we 
have coders and testers ?



Mark Harman

King’s College and 
University College London



New challenges

• Finding faults is easy; 

• … there are too many to count …

• So we need to 

• Take fault severity into account

• Develop test cases

• Develop fixes



HOM Testing

• First order mutants are not necessarily 
realistic

• We need tailored adaptive higher order 
mutation

• We need to take account of fault models

• We need non functional mutants



Jeff Offutt

George Mason University



Jeff Offutt
George Mason University

• Hampton – ROI
• Harman – HOM

Mutation 2010 Panel 13



Jeff Offutt
George Mason University

• Hampton – ROI
• Harman – HOM

Mutation 2010 Panel 13

• Offutt – YAMGG



Jeff Offutt
George Mason University

• Hampton – ROI
• Harman – HOM

Mutation 2010 Panel 13

• Offutt – YAMGG

What ????
What does that mean?

We can’t even pronounce “YAMGG”!



Research into Mutation Operators

Mutation 2010 Panel 14



Research into Mutation Operators

Mutation 2010 Panel 14

Mutation 2000



Research into Mutation Operators

Mutation 2010 Panel 14

Here is the path to 
build a commercial 
mutation system.

Jeff

Mutation 2000



Research into Mutation Operators

Mutation 2010 Panel 14

Here is the path to 
build a commercial 
mutation system.

Jeff

I quit.

Mutation 2000



Research into Mutation Operators

Mutation 2010 Panel 14

Here is the path to 
build a commercial 
mutation system.

Jeff

I quit.

Yu-Seung Ma

Mutation 2000



Research into Mutation Operators

Mutation 2010 Panel 14

Here is the path to 
build a commercial 
mutation system.

Jeff

I quit.

Yu-Seung Ma

I have an idea!
OO mutation 
operators … 

muJava

Mutation 2000



Last Decade of Mutation Operators

• Since then, we have had a veritable explosion in 
languages we can mutate

• We needed mutation operators for each language
• Java OO, XML, JSPs, HTML, SQL, XML, PhP, inter-class, 

statecharts, dynamic typing, WS-BPEL, Agents, Actors, …
• Most of today’s papers present new mutation operators

• And we need a mutation engine for each language!

Mutation 2010 Panel 15



Mutant Generators

Mutation 2010 Panel 16



Mutant Generators

Mutation 2010 Panel 16

Language



Mutant Generators

Mutation 2010 Panel 16

Language

Mutation 
Operators



Mutant Generators

Mutation 2010 Panel 16

Language

Mutation 
Operators

Program
Object

(Base String)



Mutant Generators

Mutation 2010 Panel 16

Language

Mutation 
Operators

Program
Object

(Base String)

Special purpose 
tool to create 

mutants



Mutant Generators

Mutation 2010 Panel 16

Language

Mutation 
Operators

Program
Object

(Base String)

Special purpose 
tool to create 

mutants
Mutants



Mutant Generators

Mutation 2010 Panel 16

Language

Mutation 
Operators

Program
Object

(Base String)

Special purpose 
tool to create 

mutants
Mutants

This is a lot 
of work !



Mutant Generators

Mutation 2010 Panel 17



Mutant Generators

Mutation 2010 Panel 17

Language

Mutation 
Operators

Program
Object

(Base String)

Special purpose 
tool to create 

mutants
Mutants



Mutant Generators

Mutation 2010 Panel 17

Language

Mutation 
Operators

Program
Object

(Base String)

Special purpose 
tool to create 

mutants
Mutants



Mutant Generators

Mutation 2010 Panel 17

Language

Mutation 
Operators

Program
Object

(Base String)

Special purpose 
tool to create 

mutants
Mutants

Yet Another Mutant Generator Generator



Mutant Generators

Mutation 2010 Panel 17

Language

Mutation 
Operators

Program
Object

(Base String)

Special purpose 
tool to create 

mutants
Mutants

Yet Another Mutant Generator Generator

Grammar 
for 

Language



Mutant Generators

Mutation 2010 Panel 17

Language

Mutation 
Operators

Program
Object

(Base String)

Special purpose 
tool to create 

mutants
Mutants

Yet Another Mutant Generator Generator

Grammar 
for 

Language

Rules for 
Mutation 

Operators



Mutant Generators

Mutation 2010 Panel 17

Language

Mutation 
Operators

Program
Object

(Base String)

Special purpose 
tool to create 

mutants
Mutants

Yet Another Mutant Generator Generator

Grammar 
for 

Language

Rules for 
Mutation 

Operators

YAMGG



Mutant Generators

Mutation 2010 Panel 17

Language

Mutation 
Operators

Program
Object

(Base String)

Special purpose 
tool to create 

mutants
Mutants

Yet Another Mutant Generator Generator

Grammar 
for 

Language

Rules for 
Mutation 

Operators

YAMGG

Tool to create 
mutants



Mutant Generators

Mutation 2010 Panel 17

Language

Mutation 
Operators

Program
Object

(Base String)

Special purpose 
tool to create 

mutants
Mutants

Yet Another Mutant Generator Generator

Grammar 
for 

Language

Rules for 
Mutation 

Operators

Program
Object

(Base String)

YAMGG

MutantsTool to create 
mutants



Open Challenges in Mutation Testing

• Hampton – ROI
• Harman – HOM
• Offutt – YAMGG

Mutation 2010 Panel 18



Open Challenges in Mutation Testing

• Hampton – ROI
• Harman – HOM
• Offutt – YAMGG

Mutation 2010 Panel 18

Your turn !!


