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Objectives

“In 2000, I thought we were 
finished with mutation.”



Objectives

• Why is mutation testing not done in 
industry? (Or is it?)

• Where is research leading to?

• Where should research be leading to?
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Survey Results



Mutation testing in practice

• Mutation is mainly used for research 
experiments

• Equivalent mutants are not ignored

• Equivalent mutants are mainly detected 
manually

• Mutation researchers like their own tools?
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Industry Acceptance

• Lack of automatic test data generation

• Lack of cooperation between industry and 
academia

• Industry has many pressing problems

• Huge effort and costs compared to other 
techniques

• Benefits unclear for evolving systems
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Research Challenges
• Test (data) generation

• Use mutation for other purposes such as 
repairing faults, automatic patching

• Developers don’t care how tests are built - 
they just want good tests

• Handle larger code with various features 
(databases, network, ...)



Mark Hampton
previously CTO & co-founder at Certess

Certess developed a Mutation Analysis tool.

Languages supported: VHDL, Verilog, SystemVerilog, C, C++
Company grew from 3 to 25 in 5 years

Sold to a much larger company in early 2009
Major clients: CISCO, Intel, Sony, Toshiba, Bosch etc



Open Challenges in 
Mutation Testing

 Some common assumptions need to be questioned 
(5 in this presentation)

 To be adopted MA needs to offer a convincing 
story regarding ROI



Assumption #1

 Don't assume test checking is based on golden 
results that are manually checked

 Lets assume the test environment is automated 

−an oracle exists

−e.g. model based testing



Assumption #2

 Killing a mutant should require a failing testcase

 If we change assumption #1 then this means the 
testcase includes an oracle and code for checking 
the expected results

 This means redefining strong mutation

 To include propagation through the test 
environment until the indication of a passing/failing 
testcase



Assumption #3

 Lets redefine the mutation analysis process to 
include humans interacting with the results

 no need to collect all the mutants status before 
using the information

 the order of the mutants is important

 the process for results analysis is important



Assumption #4

 Weak mutation is not a good solution to the 
performance issue

 the principle value of the Certess product is in 
finding mutants that are “weak” dead

 mutation is complimentary to coverage 
information 

 focus on the strengths of mutation compared to 
code coverage – finding problems in the 
propagation and detection of bugs



Assumption #5

 A mutation analysis metric, based on sampling, can 
be many orders of magnitude faster than the 
published results

 The Certess product provides a metric in a 
reasonable runtime even for large systems (100's 
of CPUs days of testcase execution) 



ROI 1/2

 Can an ROI perspective help with the adoption of 
MA in industry

 are we marketing the technology well ?

 which niche should be the entry point for 
software testing ? 

−where is the most pain ?



ROI 2/2

 Is mutation highlighting a more fundamental issue 
that industry is ignoring ?

 measuring the quality of testing should be a 
separate discipline from testing

− in the same way measuring that quality of the 
design has been specialized into testing

− should there be "qualifiers" in the same way we 
have coders and testers ?



Mark Harman

King’s College and 
University College London



New challenges

• Finding faults is easy; 

• … there are too many to count …

• So we need to 

• Take fault severity into account

• Develop test cases

• Develop fixes



HOM Testing

• First order mutants are not necessarily 
realistic

• We need tailored adaptive higher order 
mutation

• We need to take account of fault models

• We need non functional mutants



Jeff Offutt

George Mason University
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Jeff Offutt
George Mason University

• Hampton – ROI
• Harman – HOM
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• Offutt – YAMGG

What ????
What does that mean?

We can’t even pronounce “YAMGG”!
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Research into Mutation Operators

Mutation 2010 Panel 14

Here is the path to 
build a commercial 
mutation system.

Jeff

I quit.

Yu-Seung Ma

I have an idea!
OO mutation 
operators … 

muJava

Mutation 2000



Last Decade of Mutation Operators

• Since then, we have had a veritable explosion in 
languages we can mutate

• We needed mutation operators for each language
• Java OO, XML, JSPs, HTML, SQL, XML, PhP, inter-class, 

statecharts, dynamic typing, WS-BPEL, Agents, Actors, …
• Most of today’s papers present new mutation operators

• And we need a mutation engine for each language!

Mutation 2010 Panel 15
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Mutants

This is a lot 
of work !
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Your turn !!


