
Faculty of Computer Science Institute for System Architecture, Systems Engineering Group

As s ertion-Driven Development:
A s s es s ing the Qua lity of
C ontrac ts us ing M eta -M uta tions

Denver, CO, USA, 2009-04-04

Thomas Knauth, Christof Fetzer, Pascal Felber

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 2/18

Forecast

• weak contract completeness
• completeness varies widely for mature JML

classes and programs developed by students
• better tools are needed to help develop

sound/complete contracts

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 3/18

Motivation

• Is this a good contract for a square root
function?

 //@ require x >= 0;
 //@ ensure \result * \result == x;
 long square_root(long x) { ... }

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 4/18

Motivation (2)

• What's wrong with this contract?

//@ require x >= 0;
//@ ensure \result * \result == x;
long square_root(long x) { ... }

• contract only correct if square root of x is a
natural number

• writing correct self-checks is non-trivial!

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 5/18

Weak contract completeness

• weak contract completeness is capability
to detect mutants in a given implementation

• lower bound = detected mutants / all mutants
• upper bound = detected mutants / non-

equivalent mutants
• goal: 100% upper bound when lower bound

saturated

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 6/18

Experiments

• apply approach to set of JML classes
– generate random sequence of method calls

• 19 students develop program with contracts
– generate random test inputs

• generate meta-mutants in either case

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 7/18

Meta-mutation

• implemented as Eclipse plug-in
• mutation operators loosely based on previous

work
– not all operators are possible when meta-

mutating, e.g. swap access modifiers
• mutations can be switched on individually

based on ID
• source code mutation has better accuracy

than mutating binary code

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 8/18

Mutation coverage

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 9/18

JML BoundedStack

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 10/18

False positive (FP) and correctness

• FP = program correct, contract raising alarm

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 11/18

False negatives (FN) all revisions

• FN = program wrong, contract silent

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 12/18

False positive all revisions

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 13/18

Correctness all revisions

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 14/18

Contract (In)Completeness (LB!)

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 15/18

FN and FP student 8

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 16/18

FN and FP student 9

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 17/18

Future work

• compute upper bound and non-equivalent
mutants for student programs

• parallelize contract evaluation to speed up
self-checks

Assertion-Driven Developement: Assessing the Quality of Contracts Using Meta-Mutations2009-04-04 18/18

Summary

• writing correct self-checks is non-trivial
• upper/lower bound on completeness varies

widely
• tools for developing sound/complete self-

checks are needed

	Hier steht der Titel der Power Point Präsentation.
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

