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Forecast

• weak contract completeness
• completeness varies widely for mature JML 

classes and programs developed by students
• better tools are needed to help develop 

sound/complete contracts
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Motivation

• Is this a good contract for a square root 
function?

         //@ require x >= 0;
         //@ ensure \result * \result == x;
         long square_root(long x) { ... }
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Motivation (2)

• What's wrong with this contract?

//@ require x >= 0;
//@ ensure \result * \result == x;
long square_root(long x) { ... }

• contract only correct if square root of x is a 
natural number

• writing correct self-checks is non-trivial!
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Weak contract completeness

• weak contract completeness is capability 
to detect mutants in a given implementation

• lower bound = detected mutants / all mutants
• upper bound = detected mutants / non-

equivalent mutants
• goal: 100% upper bound when lower bound 

saturated
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Experiments

• apply approach to set of JML classes
– generate random sequence of method calls

• 19 students develop program with contracts
– generate random test inputs

• generate meta-mutants in either case
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Meta-mutation

• implemented as Eclipse plug-in
• mutation operators loosely based on previous 

work
– not all operators are possible when meta-

mutating, e.g. swap access modifiers
• mutations can be switched on individually 

based on ID
• source code mutation has better accuracy 

than mutating binary code
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Mutation coverage
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JML BoundedStack
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False positive (FP) and correctness

• FP = program correct, contract raising alarm
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False negatives (FN) all revisions

• FN = program wrong, contract silent
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False positive all revisions
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Correctness all revisions
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Contract (In)Completeness (LB!)
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FN and FP student 8
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FN and FP student 9
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Future work

• compute upper bound and non-equivalent 
mutants for student programs

• parallelize contract evaluation to speed up 
self-checks
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Summary

• writing correct self-checks is non-trivial
• upper/lower bound on completeness varies 

widely
• tools for developing sound/complete self-

checks are needed
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