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Aspect Oriented Programming

• The crosscutting concerns are separated from the core 
concern

• Aspect

• Advice

• Pointcut Descriptor (PCD)

• Describes a set of joinpoints
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Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

Aspect Oriented Programming: 
example
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+ deleteAccount(int): boolean
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Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

public aspect AccessControl {
    pointcut controlledAccess(): execution(* Account.*(int))

    @AdviceName("AccessControl")
    before(): controlledAccess() {
        if(!checkAccess(thisJoinPoint.getTarget()))
            throw new DeniedAccessException();
    }
}
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+ login(String,String): boolean

+ deleteAccount(int): boolean

+ createAccount(): Account

+ getAccount(int): Account

*
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Mutant Pointcut Descriptor

• A PCD where a fault has been inserted

• Selects a different set of joinpoints

• Equivalent mutant

• Mutant that matches the same set of joinpoint
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Mutant Pointcut Descriptor

• A PCD where a fault has been inserted

• Selects a different set of joinpoints

• Equivalent mutant

• Mutant that matches the same set of joinpoint

• Equivalent mutants can be detected statically
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•Compilation
•A jar file for 
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Mutant Generation

• An Abstract Syntax Tree (AST) for each PCD

• Mutation operators from [Ferrari et al., ICST’08]

• Implemented as AST visitors

• Inserts the fault by modifying the AST

• The AST is pretty-printed in a mutant source file

• New operators can added easily
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Mutation Operators
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Operator Description
PCCC Replaces a cflow by a cflowbelow, or the contrary
PCCE Replaces a call by an execution, or the contrary
PCGS Replaces a get by a set, or the contrary
PCLO Changes the logical operators in a composition of PCDs
PCTT Replaces a this by a target, or the contrary
POEC Adds, removes or changes throwing clauses
POPL Changes the parameter list
PSWR Removes wildcards
PWAR Removes annotation from type, field or method patterns
PWIW Adds wildcards



Mutant Generation: problem
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• What we want: mutants PCDs selecting different joinpoints

• What we do: modify the declaration of the PCD

• Problem:

• Several different declarations can describe the same PCD

• Thus we can have an equivalent mutant.



Mutant Compilation

• Each mutant is compiled

• If the compilation does not fail, the mutant is classified

• Automatic classification, using the previous classification

• A selection of the mutant is made, depending on their class

• The mutation analysis only considers selected mutants
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Automatic Classification and 
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Static and Dynamic PCDs
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• All PCDs have a static part

• Worst case: all the joinpoints of the program

• Some PCDs have a dynamic part (Dynamic PCDs)

• At runtime the dynamic part decides whether the advice is 
executed or not (restriction of the joinpoints)

• At compile time the set of joinpoints matched by a dynamic 
PCD can only be over-approximated



Dynamic PCD: example
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Classification and Selection with 
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Execution of the Test Suite
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• The test suite is executed on each mutant system

• JUnit test suite

• All tests pass on the original system

• A mutant is killed if at least one test case fails

• Qualification of the JUnit oracle

• A mutation score for the test suite



Conclusion

• AjMutator, a tool for the mutation analysis of PCDs

• Operators insert faults in the PCDs

• Mutant are compiled, classified, and selected automatically

• Automatic detection of the equivalent mutant in most cases

• Execution of a Test Suite

• http://www.irisa.fr/triskell/softwares-fr/protos/AjMutator/
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http://www.irisa.fr/triskell/softwares-fr/protos/AjMutator/
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Evaluation on HealthWatcher
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Class Number of Mutants
1 (both) 55

2 (neglected) 50
3 (unintended) 129

unknown 65
Total Selected 299

Equivalent 296
Non-Compilable 90

Total 685


