
1IRISA / INRIA
Rennes, France

AjMutator: a Tool for the
Mutation Analysis of Pointcut
Descriptors

1

2Télécom Bretagne
Rennes, France

April 5th 2009 Mutation 2009 Denver

Romain Delamare1 Benoit Baudry1 Yves Le Traon2

Aspect Oriented Programming

• The crosscutting concerns are separated from the core
concern

• Aspect

• Advice

• Pointcut Descriptor (PCD)

• Describes a set of joinpoints

2

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

Aspect Oriented Programming:
example

3

Bank
+ login(String,String): boolean

+ deleteAccount(int): boolean

+ createAccount(): Account

+ getAccount(int): Account

*

accounts

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

public aspect AccessControl {
 pointcut controlledAccess(): execution(* Account.*(int))

 @AdviceName("AccessControl")
 before(): controlledAccess() {
 if(!checkAccess(thisJoinPoint.getTarget()))
 throw new DeniedAccessException();
 }
}

Aspect Oriented Programming:
example

3

Bank
+ login(String,String): boolean

+ deleteAccount(int): boolean

+ createAccount(): Account

+ getAccount(int): Account

*

accounts

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

public aspect AccessControl {
 pointcut controlledAccess(): execution(* Account.*(int))

 @AdviceName("AccessControl")
 before(): controlledAccess() {
 if(!checkAccess(thisJoinPoint.getTarget()))
 throw new DeniedAccessException();
 }
}

Aspect Oriented Programming:
example

3

Bank
+ login(String,String): boolean

+ deleteAccount(int): boolean

+ createAccount(): Account

+ getAccount(int): Account

*

accounts

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

public aspect AccessControl {
 pointcut controlledAccess(): execution(* Account.*(int))

 @AdviceName("AccessControl")
 before(): controlledAccess() {
 if(!checkAccess(thisJoinPoint.getTarget()))
 throw new DeniedAccessException();
 }
}

Aspect Oriented Programming:
example

3

Bank
+ login(String,String): boolean

+ deleteAccount(int): boolean

+ createAccount(): Account

+ getAccount(int): Account

*

accounts

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

public aspect AccessControl {
 pointcut controlledAccess(): execution(* Account.*(int))

 @AdviceName("AccessControl")
 before(): controlledAccess() {
 if(!checkAccess(thisJoinPoint.getTarget()))
 throw new DeniedAccessException();
 }
}

Aspect Oriented Programming:
example

3

Bank
+ login(String,String): boolean

+ deleteAccount(int): boolean

+ createAccount(): Account

+ getAccount(int): Account

*

accounts

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

Aspect Oriented Programming:
example

3

Bank
+ login(String,String): boolean

+ deleteAccount(int): boolean

+ createAccount(): Account

+ getAccount(int): Account

*

accounts

withdrawmoney
> 0 ?

yes

no

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

Aspect Oriented Programming:
example

3

Bank
+ login(String,String): boolean

+ deleteAccount(int): boolean

+ createAccount(): Account

+ getAccount(int): Account

*

accounts

withdrawmoney
> 0 ?

yes

no

authorized ?
yes

no

Intended

Classes of Faults in the Pointcut
Descriptor

4

Matched

Intended

Classes of Faults in the Pointcut
Descriptor

4

Matched

correct PCD

Intended

Classes of Faults in the Pointcut
Descriptor

4

Matched

neglected
joinpoints

correct PCD

Intended

Classes of Faults in the Pointcut
Descriptor

4

Matched

neglected
joinpoints

unintended
joinpoints

correct PCD

Intended

Classes of Faults in the Pointcut
Descriptor

4

Matched

both
neglected and unintended

neglected
joinpoints

unintended
joinpoints

correct PCD

Intended

Classes of Faults in the Pointcut
Descriptor

4

Matched

correct PCD

class 1 class 3class 2

Mutant Pointcut Descriptor

• A PCD where a fault has been inserted

• Selects a different set of joinpoints

• Equivalent mutant

• Mutant that matches the same set of joinpoint

5

Mutant Pointcut Descriptor

• A PCD where a fault has been inserted

• Selects a different set of joinpoints

• Equivalent mutant

• Mutant that matches the same set of joinpoint

• Equivalent mutants can be detected statically

5

AjMutator: Overview

6

Mutant
Generation

Mutant
Compilation

Test Cases
Running

AjMutator: Overview

6

Mutant
Generation

Mutant
Compilation

Test Cases
Running

•PCD parsing

AjMutator: Overview

6

Mutant
Generation

Mutant
Compilation

Test Cases
Running

•PCD parsing
•AST for each
PCD

AjMutator: Overview

6

Mutant
Generation

Mutant
Compilation

Test Cases
Running

•PCD parsing
•AST for each
PCD

•Fault insertion by
the mutation
operators

AjMutator: Overview

6

Mutant
Generation

Mutant
Compilation

Test Cases
Running

•PCD parsing
•AST for each
PCD

•Fault insertion by
the mutation
operators

AjMutator: Overview

6

Mutant
Generation

Mutant
Compilation

Test Cases
Running

•PCD parsing
•AST for each
PCD

•Fault insertion by
the mutation
operators

•Compilation

AjMutator: Overview

6

Mutant
Generation

Mutant
Compilation

Test Cases
Running

•PCD parsing
•AST for each
PCD

•Fault insertion by
the mutation
operators

•Compilation
•A jar file for
each mutant

AjMutator: Overview

6

Mutant
Generation

Mutant
Compilation

Test Cases
Running

•PCD parsing
•AST for each
PCD

•Fault insertion by
the mutation
operators

•Compilation
•A jar file for
each mutant

•Classification

AjMutator: Overview

6

Mutant
Generation

Mutant
Compilation

Test Cases
Running

•PCD parsing
•AST for each
PCD

•Fault insertion by
the mutation
operators

•Compilation
•A jar file for
each mutant

•Classification
•Selection

AjMutator: Overview

6

Mutant
Generation

Mutant
Compilation

Test Cases
Running

•PCD parsing
•AST for each
PCD

•Fault insertion by
the mutation
operators

•Compilation
•A jar file for
each mutant

•Classification
•Selection

AjMutator: Overview

6

Mutant
Generation

Mutant
Compilation

Test Cases
Running

•PCD parsing
•AST for each
PCD

•Fault insertion by
the mutation
operators

•Compilation
•A jar file for
each mutant

•Classification
•Selection

•Test cases are
executed on each
mutant system

AjMutator: Overview

6

Mutant
Generation

Mutant
Compilation

Test Cases
Running

•PCD parsing
•AST for each
PCD

•Fault insertion by
the mutation
operators

•Compilation
•A jar file for
each mutant

•Classification
•Selection

•Test cases are
executed on each
mutant system

•Mutation score
for the test suite

Mutant Generation

• An Abstract Syntax Tree (AST) for each PCD

• Mutation operators from [Ferrari et al., ICST’08]

• Implemented as AST visitors

• Inserts the fault by modifying the AST

• The AST is pretty-printed in a mutant source file

• New operators can added easily

7

Mutation Operators

8

Operator Description
PCCC Replaces a cflow by a cflowbelow, or the contrary
PCCE Replaces a call by an execution, or the contrary
PCGS Replaces a get by a set, or the contrary
PCLO Changes the logical operators in a composition of PCDs
PCTT Replaces a this by a target, or the contrary
POEC Adds, removes or changes throwing clauses
POPL Changes the parameter list
PSWR Removes wildcards
PWAR Removes annotation from type, field or method patterns
PWIW Adds wildcards

Mutant Generation: problem

9

• What we want: mutants PCDs selecting different joinpoints

• What we do: modify the declaration of the PCD

• Problem:

• Several different declarations can describe the same PCD

• Thus we can have an equivalent mutant.

Mutant Compilation

• Each mutant is compiled

• If the compilation does not fail, the mutant is classified

• Automatic classification, using the previous classification

• A selection of the mutant is made, depending on their class

• The mutation analysis only considers selected mutants

10

Automatic Classification and
Selection of the Mutants

11

compiles ?

Automatic Classification and
Selection of the Mutants

11

compiles ?

non
compilable

no

Automatic Classification and
Selection of the Mutants

11

compiles ?
class 1
both

yes
neglected ? unintended ?

yes yes

non
compilable

no

Automatic Classification and
Selection of the Mutants

11

compiles ?
class 1
both

yes
neglected ? unintended ?

yes yes

class 2
neglected

no

non
compilable

no

Automatic Classification and
Selection of the Mutants

11

compiles ?
class 1
both

yes
neglected ? unintended ?

yes yes

unintended ?

no

class 3
unintended

yes

class 2
neglected

no

non
compilable

no

Automatic Classification and
Selection of the Mutants

11

compiles ?
class 1
both

yes
neglected ? unintended ?

yes yes

unintended ?

no

class 3
unintended

yes

class 2
neglected

no

non
compilable

no

equivalent

no

Selected

Automatic Classification and
Selection of the Mutants

11

compiles ?
class 1
both

yes
neglected ? unintended ?

yes yes

unintended ?

no

class 3
unintended

yes

class 2
neglected

no

non
compilable

no

equivalent

no

Selected

Automatic Classification and
Selection of the Mutants

11

compiles ?
class 1
both

yes
neglected ? unintended ?

yes yes

unintended ?

no

class 3
unintended

yes

class 2
neglected

no

non
compilable

no

equivalent

no

Not
Selected

Static and Dynamic PCDs

12

• All PCDs have a static part

• Worst case: all the joinpoints of the program

• Some PCDs have a dynamic part (Dynamic PCDs)

• At runtime the dynamic part decides whether the advice is
executed or not (restriction of the joinpoints)

• At compile time the set of joinpoints matched by a dynamic
PCD can only be over-approximated

Dynamic PCD: example

13

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

Bank
+ login(String,String): boolean

+ deleteAccount(int): boolean

+ createAccount(): Account

+ getAccount(int): Account

*

accounts

Dynamic PCD: example

13

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

Bank
+ login(String,String): boolean

+ deleteAccount(int): boolean

+ createAccount(): Account

+ getAccount(int): Account

*

accounts

pointcut controlledAccess(): get(Account.balance) &&
 cflow(execution(* Auction.withdraw(int)))

Dynamic PCD: example

13

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

Bank
+ login(String,String): boolean

+ deleteAccount(int): boolean

+ createAccount(): Account

+ getAccount(int): Account

*

accounts

pointcut controlledAccess(): get(Account.balance) &&
 cflow(execution(* Auction.withdraw(int)))

public boolean withdraw(int amount) {
 if(balance>0) {
 // ...
 }

matched

Dynamic PCD: example

13

Account

+ withdraw(int): boolean

+ deposit(int): void

- balance

Bank
+ login(String,String): boolean

+ deleteAccount(int): boolean

+ createAccount(): Account

+ getAccount(int): Account

*

accounts

pointcut controlledAccess(): get(Account.balance) &&
 cflow(execution(* Auction.withdraw(int)))

public boolean withdraw(int amount) {
 if(balance>0) {
 // ...
 }

matched

public void deposit(int amount) {
 if(balance>0) {
 // ...
 }

not
matched

Classification and Selection with
Dynamic PCDs

14

unintended ?

class 1
both

yes
compiles ?

no

neglected ?

class 2
neglected

class 3
unintended

unintended ?
yes yes

yes

no

equivalent
non

compilable

no

no

Classification and Selection with
Dynamic PCDs

14

unintended ?

class 1
both

yes
compiles ?

no

neglected ?

class 2
neglected

class 3
unintended

unintended ?
yes yes

yes

no

equivalent
non

compilable

no

no

no

dynamic ?

unknown
yes

Classification and Selection with
Dynamic PCDs

14

unintended ?

class 1
both

yes
compiles ?

no

neglected ?

class 2
neglected

class 3
unintended

unintended ?
yes yes

yes

no

equivalent
non

compilable

no

no

no

dynamic ?

unknown
yes

Selected
Not
Selected

Execution of the Test Suite

15

• The test suite is executed on each mutant system

• JUnit test suite

• All tests pass on the original system

• A mutant is killed if at least one test case fails

• Qualification of the JUnit oracle

• A mutation score for the test suite

Conclusion

• AjMutator, a tool for the mutation analysis of PCDs

• Operators insert faults in the PCDs

• Mutant are compiled, classified, and selected automatically

• Automatic detection of the equivalent mutant in most cases

• Execution of a Test Suite

• http://www.irisa.fr/triskell/softwares-fr/protos/AjMutator/

16

http://www.irisa.fr/triskell/softwares-fr/protos/AjMutator/
http://www.irisa.fr/triskell/softwares-fr/protos/AjMutator/

Evaluation on HealthWatcher

17

Class Number of Mutants
1 (both) 55

2 (neglected) 50
3 (unintended) 129

unknown 65
Total Selected 299

Equivalent 296
Non-Compilable 90

Total 685

