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Aspect Oriented Programming

* [he crosscutting concerns are separated from the core
concern

» Aspect
- Advice
B etcliDescriptor (PCD)

» Describes a set of joinpoints
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Aspect Oriented Programming;
example

Bank A
+ login(String,String): boolean CCOU nt
accounts | pajance
+ deleteAccount(int): boolean % : .
* | 4+ withdraw(int): boolean
+ createAccount(): Account ek .
+ deposit(int): void
+ getAccount(int): Account
NoO
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Mutant Pointcut Descriptor

« A PCD where a fault has been inserted
» Selects a different set of joinpoints
* Equivalent mutant

» Mutant that matches the same set of joinpoint



Mutant Pointcut Descriptor

« A PCD where a fault has been inserted
» Selects a different set of joinpoints
* Equivalent mutant
» Mutant that matches the same set of joinpoint

» Equivalent mutants can be detected statically
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AjMutator: Overview

Mutant Mutant Test Cases
Generation Compilation Running

- PCD parsing »Compilation - [est cases are

*AST for each * A Jar file for executed on each

PCD each mutant mutant system
- Fault insertion by - Classification - Mutation score

the mutation *Selection for the test suite
operators




Mutant Generation

* An Abstract Syntax Tree (AST) for each PCD
» Mutation operators from [Ferrari et al., ICST'08]
* Implemented as AST visitors
* Inserts the fault by modifying the AST
* The AST Is pretty-printed In a mutant source file

* New operators can added easlly



Mutation Operators

PCCC | Replaces a cflow by a cflowbelow, or the contrary
ZGlEIE Replaces a call by an execution, or the contrary
PGS Replaces a get by a set, or the contrary

p C @ Changes the logical operators in a composition of PCDs
REHE Replaces a this by a target, or the contrary

POEC | Adds, removes or changes throwing clauses

AOIE Changes the parameter list

PSWR | Removes wildcards

PWAR | Removes annotation from type, field or method patterns

PWIW Adds wildcards




Mutant Generation: problem

* What we want: mutants PCDs selecting different joinpoints

* What we do: modify the declaration of the PCD

* Problem:
« Several different declarations can describe the same PCD

» [hus we can have an eqguivalent mutant.



Mutant Compilation

* Fach mutant 1s compiled
* |f the compilation does not fall, the mutant is classified
» Automatic classification, using the previous classification
* A selection of the mutant i1s made, depending on their class

* [ he mutation analysis only considers selected mutants
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Static and Dynamic PCDs

g (RE@Ds Have a static part
» Worst case: all the joinpoints of the program
» Some PCDs have a dynamic part (Dynamic PCDs)

* At runtime the dynamic part decides whether the advice Is
executed or not (restriction of the joinpoints)

» At compile time the set of joinpoints matched by a dynamic
PCD can only be over-approximated
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Dynamic PCD: example

Bank

+ login(String,String): boolean
+ deleteAccount(int): boolean
+ createAccount(): Account

+ getAccount(int): Account

accounts

Account

>

*

- balance

+ withdraw(int): boolean

+ deposit(int): void
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Bank S
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NOot
matched

public vold deposit(int amount) {
1f(balance>0) {
78

I
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Classification and Selection with
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Classification and Selection with
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Execution of the Test Suite

* [he test suite Is executed on each mutant system
SRISIRlistest suite
» All tests pass on the original system

» A mutant Is killed If at least one test case fails
» Qualification of the |Unit oracle

* A mutation score for the test suite

|5



Conclusion

- AJMutator, a tool for the mutation analysis of PCDs
» Operators Insert faults in the PCDs
» Mutant are compiled, classified, and selected automatically
» Automatic detection of the equivalent mutant in most cases
» Execution of a lest Surte

» http://www.irisa.fr/triskell/softwares-fr/protos/AjMutator/
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Fvaluation on HealthVWatcher

| (both) 55

2 (neglected) 50
3 (unintended) |29
unknown 65
Total Selected D)
Equivalent 206
Non-Compilable 90

Total 685
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