AjMutator: a ool for the
Mutation Analysis of Pointcut
Descriptors

Romain Delamare! Benolt Baudry' Yves Le Traon?
'IRISA / INRIA *Télécom Bretagne
Rennes, France Rennes, France

>—> e -
T B TELECOM
W[NRIA Bretagne

April 5t 2009 Mutation 2009 Denver

Aspect Oriented Programming

* [he crosscutting concerns are separated from the core
concern

» Aspect
- Advice
B etcliDescriptor (PCD)

» Describes a set of joinpoints

Aspect Oriented Programming;
example

Bank i
+ login(String,String): boolean CCOU nt
accounts | e
+ deleteAccount(int): boolean % >

+ withdraw(int): boolean

+ createAccount(): Account L .
+ deposit(int): void

+ getAccount(int): Account

Aspect Oriented Programming;
example

Bank S
+ login(String,String): boolean CCOUu nt
accounts | e
+ deleteAccount(int): boolean B >

+ withdraw(int): boolean

+ createAccount(): Account

+ deposit(int): void

+ getAccount(int): Account

public aspect AccessControl {
pointcut controlledAccess(): execution(* Account.*(int))

@AdviceName("AccessControl™)
before(): controlledAccess() {
1f(!checkAccess(thisJoinPoint.getTarget()))
throw new DeniedAccessException();

Aspect Oriented Programming;
example

Bank S
+ login(String,String): boolean CCOUu nt
accounts | e
+ deleteAccount(int): boolean B >

+ withdraw(int): boolean

+ createAccount(): Account

+ deposit(int): void

+ getAccount(int): Account

public aspect AccessControl {
pointcut controlledAccess(): execution(* Account.*(int))

@AdviceName("AccessControl™)
before(): controlledAccess() {
1f(!checkAccess(thisJoinPoint.getTarget()))
throw new DeniedAccessException();

Aspect Oriented Programming;
example

Bank i
+ login(String,String): boolean CCOU nt
accounts | e
+ deleteAccount(int): boolean B >

+ withdraw(int): boolean

+ createAccount(): Account

+ deposit(int): void

+ getAccount(int): Account

public aspect AccessControl {
pointcut controlledAccess(): execution(* Account.*(int))

@AdviceName("AccessControl™)
before(): controlledAccess() {
1f(!checkAccess(thisJoinPoint.getTarget()))
throw new DeniedAccessException();

Aspect Oriented Programming;
example

Bank i
+ login(String,String): boolean CCOU nt
accounts | e
+ deleteAccount(int): boolean B >

+ withdraw(int): boolean

+ createAccount(): Account

+ deposit(int): void

+ getAccount(int): Account

public aspect AccessControl {
pointcut controlledAccess(): execution(* Account.*(int))

@AdviceName("AccessControl™)
before(): controlledAccess() {
1f(!checkAccess(thisJoinPoint.getTarget()))
throw new DeniedAccessException();

Aspect Oriented Programming;
example

Bank i
+ login(String,String): boolean CCOU th
accounts | D
+ deleteAccount(int): boolean 3 >

+ withdraw(int): boolean

+ createAccount(): Account

+ deposit(int): void

+ getAccount(int): Account

(r— withdraw

No

Aspect Oriented Programming;
example

Bank A
+ login(String,String): boolean CCOU nt
accounts | pajance
+ deleteAccount(int): boolean % : .
* | 4+ withdraw(int): boolean
+ createAccount(): Account ek .
+ deposit(int): void
+ getAccount(int): Account
NoO

yes

withdraw

authorized ?

NoO

Classes of Faults in the Pointcut
Descriptor

Classes of Faults in the Pointcut
Descriptor

correct PCD .

Classes of Faults in the Pointcut
Descriptor

gerrect RCE .

neglected
joinpoints

Classes of Faults in the Pointcut
Descriptor

gerrect RCE .

neglected unintended
joinpoints joinpoints

Classes of Faults in the Pointcut
Descriptor

gerrect RCE .

both neglected unintended
neglected and unintended joinpoints joinpoints

- Intended - Matchea

Classes of Faults in the Pointcut
Descriptor

correct PCD .

dess | @SSy classit

B |ntended

- Matched

Mutant Pointcut Descriptor

« A PCD where a fault has been inserted
» Selects a different set of joinpoints
* Equivalent mutant

» Mutant that matches the same set of joinpoint

Mutant Pointcut Descriptor

« A PCD where a fault has been inserted
» Selects a different set of joinpoints
* Equivalent mutant
» Mutant that matches the same set of joinpoint

» Equivalent mutants can be detected statically

AjMutator: Overview

Mutant Mutant Test Cases
(Generation Compilation Running

AjMutator: Overview

Mutant Mutant Test Cases
(Generation Compilation Running

- PCD parsing

AjMutator: Overview

Mutant Mutant Test Cases
(Generation Compilation Running

- PCD parsing
*AST for each
PCD

AjMutator: Overview

Mutant Mutant Test Cases
(Generation Compilation Running

- PCD parsing

*AST for each
PCD

- Fault insertion by
the mutation
operators

AjMutator: Overview

Mutant Mutant Test Cases
Generation Compilation Running

- PCD parsing

*AST for each
PCD

- Fault insertion by
the mutation
operators

AjMutator: Overview

Mutant Mutant Test Cases
Generation Compilation Running

- PCD parsing »Compilation
*AST for each

PCD
- Fault Insertion by

the mutation

operators

AjMutator: Overview

Mutant Mutant Test Cases
Generation Compilation Running

- PCD parsing »Compilation
*AST for each *A jar file for
PCD each mutant
- Fault Insertion by

the mutation

operators

AjMutator: Overview

Mutant Mutant Test Cases
Generation Compilation Running

- PCD parsing »Compilation
*AST for each *A jar file for
PCD each mutant
- Fault insertion by - Classification
the mutation

operators

AjMutator: Overview

Mutant Mutant Test Cases
Generation Compilation Running

- PCD parsing »Compilation

*AST for each *A jar file for
PCD each mutant

- Fault insertion by - Classification
the mutation - Selection
operators

AjMutator: Overview

Mutant Mutant Test Cases
Generation Compilation Running

- PCD parsing » Compillation

*AST for each * A Jar file for
PCD each mutant

- Fault insertion by - Classification
the mutation * Selection
operators

AjMutator: Overview

Mutant Mutant Test Cases
Generation Compilation Running

- PCD parsing »Compilation - [est cases are
*AST for each * A Jar file for executed on each
PCD each mutant mutant system
- Fault insertion by - Classification

the mutation * Selection

operators

AjMutator: Overview

Mutant Mutant Test Cases
Generation Compilation Running

- PCD parsing »Compilation - [est cases are

*AST for each * A Jar file for executed on each

PCD each mutant mutant system
- Fault insertion by - Classification - Mutation score

the mutation *Selection for the test suite
operators

Mutant Generation

* An Abstract Syntax Tree (AST) for each PCD
» Mutation operators from [Ferrari et al., ICST'08]
* Implemented as AST visitors
* Inserts the fault by modifying the AST
* The AST Is pretty-printed In a mutant source file

* New operators can added easlly

Mutation Operators

PCCC | Replaces a cflow by a cflowbelow, or the contrary
ZGlEIE Replaces a call by an execution, or the contrary
PGS Replaces a get by a set, or the contrary

p C @ Changes the logical operators in a composition of PCDs
REHE Replaces a this by a target, or the contrary

POEC | Adds, removes or changes throwing clauses

AOIE Changes the parameter list

PSWR | Removes wildcards

PWAR | Removes annotation from type, field or method patterns

PWIW Adds wildcards

Mutant Generation: problem

* What we want: mutants PCDs selecting different joinpoints

* What we do: modify the declaration of the PCD

* Problem:
« Several different declarations can describe the same PCD

» [hus we can have an eqguivalent mutant.

Mutant Compilation

* Fach mutant 1s compiled
* |f the compilation does not fall, the mutant is classified
» Automatic classification, using the previous classification
* A selection of the mutant i1s made, depending on their class

* [he mutation analysis only considers selected mutants

10

Automatic Classification anag
Selection of the Mutants

ro

Automatic Classification anag
Selection of the Mutants

-

Automatic Classification anag
Selection of the Mutants

€S

. YES b , yes
‘—> compiles ? neglected ! unintended !

No

A4

non
compillable

Automatic Classification anag
Selection of the Mutants

€S

, es , Ee class |
‘—> compiles ? ! neglected ! ! unintended 7 oA

both

No class 2
neglected

No

A4

non
compillable

Automatic Classification anag
Selection of the Mutants

yes class |

o— D ected ? SA intended ?
complles neglected unintended ! both

No

no class 2
. neglected
unintended ?
gle
yes class 3

unintended

A4

non
compillable

Automatic Classification anag
Selection of the Mutants

yes class |

o— D ected ? SA intended ?
complies ¢ neglected ¢ unintended oth

gle
no class 2
. neglected
unintended ?
no
YES class 3
unintended
gle

A4

non Y

Automatic Classification anag

Selection of the Mutants

R compiles ?

A4

non
compillable

yes

neglected !

unintended ?
gle

A 4

No

unintended ?

yes

no class 2
neglected

yes

NoO

equivalent

\
class |

both

class 3
unintended

Selected
_)

Automatic Classification anag
Selection of the Mutants

~

yes class |

o— D ected ? SA intended ?
complles neglected unintended ! both

gle
no class 2
. neglected
unintended ?
gle
yes class 3
unintended
gle
\

§ v
Not ey X
kSeIected compilable) oeleciedl

Static and Dynamic PCDs

g (RE@Ds Have a static part
» Worst case: all the joinpoints of the program
» Some PCDs have a dynamic part (Dynamic PCDs)

* At runtime the dynamic part decides whether the advice Is
executed or not (restriction of the joinpoints)

» At compile time the set of joinpoints matched by a dynamic
PCD can only be over-approximated

12

Dynamic PCD: example

Bank

+ login(String,String): boolean
+ deleteAccount(int): boolean
+ createAccount(): Account

+ getAccount(int): Account

accounts

Account

>

*

- balance

+ withdraw(int): boolean

+ deposit(int): void

13

Dynamic PCD: example

Bank S
+ login(String,String): boolean CCOUu nt
accounts | e
+ deleteAccount(int): boolean B >

+ withdraw(int): boolean

+ createAccount(): Account L .
+ deposit(int): void

+ getAccount(int): Account

pointcut controlledAccess(): get(Account.balance) &&
cflow(execution(* Auction.withdraw(int)))

13

Dynamic PCD: example

Bank S
+ login(String,String): boolean CCOUu nt
accounts | e
+ deleteAccount(int): boolean B >

+ withdraw(int): boolean

+ createAccount(): Account

+ deposit(int): void

+ getAccount(int): Account

pointcut controlledAccess(): get(Account.balance) &&
cflow(execution(* Auction.withdraw(int)))

public boolean withdraw(int amount) {
matched =9 if(balance>0) {
AT

}

Dynamic PCD: example

Bank S
+ login(String,String): boolean CCOUu nt
accounts | e
+ deleteAccount(int): boolean B >

+ withdraw(int): boolean

+ createAccount(): Account L .
+ deposit(int): void

+ getAccount(int): Account

pointcut controlledAccess(): get(Account.balance) &&
cflow(execution(* Auction.withdraw(int)))

matched ==

public boolean withdraw(int amount) {
1f(balance>0) {
AT

}

NOot
matched

public vold deposit(int amount) {
1f(balance>0) {
78

I

13

Classification and Selection with
Dynamic PCDs

compiles !

A4

non
compillable

neglected ? unintended ¢

unintended ?

No class 2
neglected

NO

A 4

equivalent

yes o class 3
unintended

|4

Classification and Selection with
Dynamic PCDs

compiles ! neglected ! unintended ¢

p
unintended ? neglected

YES class 3
unintended

yes
e UNnknown

dynamic !

A4

glely
compllable equivalent

|4

Classification and Selection with
Dynamic PCDs

compiles ! neglected !
unintended ?
no
dynamic !
-
Y
Not e
Selected EeuEsE equivalent
9

unintended ?

class 2

neglected

18 class 3
unintended

P

unknown

Selected
. >

|4

Execution of the Test Suite

* [he test suite Is executed on each mutant system
SRISIRlistest suite
» All tests pass on the original system

» A mutant Is killed If at least one test case fails
» Qualification of the |Unit oracle

* A mutation score for the test suite

|5

Conclusion

- AJMutator, a tool for the mutation analysis of PCDs
» Operators Insert faults in the PCDs
» Mutant are compiled, classified, and selected automatically
» Automatic detection of the equivalent mutant in most cases
» Execution of a lest Surte

» http://www.irisa.fr/triskell/softwares-fr/protos/AjMutator/

16

http://www.irisa.fr/triskell/softwares-fr/protos/AjMutator/
http://www.irisa.fr/triskell/softwares-fr/protos/AjMutator/

Fvaluation on HealthVWatcher

| (both) 55

2 (neglected) 50
3 (unintended) |29
unknown 65
Total Selected D)
Equivalent 206
Non-Compilable 90

Total 685

|7

