
M UGAMMA : Mutation Analysis of Deployed Software
to Increase Confidence and Assist Evolution

Sang-Woon Kim
Division of Computer Science

Department of EECS

KAIST, Korea

swkim@salmosa.kaist.ac.kr

Mary Jean Harrold
College of Computing

Georgia Institute of Technology

Atlanta, Georgia

harrold@cc.gatech.edu

Yong-Rae Kwon
Division of Computer Science

Department of EECS

KAIST, Korea

kwon@cs.kaist.ac.kr

Abstract

This paper presents a novel approach to unit testing that
lets users of deployed software assist in performing muta-
tion testing of the software. Our technique,MUGAMMA ,
provisions a software system so that when it executes in
the field, it will determine whether users’ executionswould
have killed mutants (without actually executing the mu-
tants), and if so, captures the state information about those
executions. In the absence of bug reports, knowledge of ex-
ecutions that would have killed mutants provides additional
confidence in the system over that gained by the testing
performed before deployment. Captured information about
the state before and after execution of units (e.g., methods)
can be used to construct test cases for use in unit testing
when changes are made to the software. The paper also
describes our prototypeMUGAMMA implementation along
with a case study that demonstrates its potential efficacy.

1 Introduction

Mutation testing is a powerful technique for unit test-
ing of software, whose fundamental premise is that “if the
software contains a fault, there will usually be a set of mu-
tants that can only be killed by a test case that also de-
tects the fault” [4, 16]. Empirical studies support the ef-
fectiveness of mutation testing as a criterion for unit testing
(e.g., [3, 13, 15]). Thus, providing unit test suites that are
mutation-adequate can increase confidence in the quality of
the software under test.

Despite general acceptance of the effectiveness of muta-
tion testing, it has not been adopted in practice. Offutt and
Untch discuss three primary reasons for this lack of use in
practice [16]. The first reason—the lack of economic incen-
tives for stringent testing—may no longer apply. The perva-
siveness of software has led to increased demand for high-

quality systems, which will result in increased economic in-
centives for such stringent testing. The other two reasons—
the inability to successfully integrate unit testing into soft-
ware development processes and the difficulties with pro-
viding full and economical automated technology to sup-
port mutation analysis and testing—do still apply. Although
there is increased interest in improving the quality of soft-
ware, time-to-market pressures and limited development re-
sources will continue to prohibit integration of effective unit
testing into the development process. Furthermore, even
with advances in reducing the computation cost of mutation
testing, the complex technology required to support muta-
tion analysis and testing, such as automatic test-case gen-
eration, identification of equivalent mutants, and process-
ing the large number of mutants, will continue to inhibit
development of economical automated support technology.
Thus, although mutation testing may help to improve the
quality of the software, it may not be used for unit testing
of software before deployment.

Lack of effective testing during development results in
systems that are deployed with defects in implementation,
missing functionality, incompatibilities with complicated
running environments, or inferior usability. To address
these problems and to continue to improve these systems,
there is a need for, and a growing interest in, monitoring the
systems after they are deployed. Such monitoring can be
used to perform tasks, such as detecting anomalous behav-
ior (e.g., [1, 5]), finding and fixing defects (e.g., [9, 19, 23]),
determining the impact of potential changes on users or
groups of users (e.g., [18, 22]), and improving the quality
of the regression test suite (e.g., [18]).

Such monitoring could also be used to perform mutation
analysis as the software is executing in the field to (1) im-
prove confidence in the deployed software and (2) gather
test cases for use in regression testing. To improve confi-
dence in the deployed software, monitoring could augment
mutation testing (if any) that was performed before deploy-
ment by identifying and reporting mutants thatwould be



killed by executions of the software in the field. Mutation
testing before deployment guides the creation of a test suite
that improves confidence in the software. Similarly, in the
absence of bug reports from the field, mutation testing af-
ter deployment records executions that provide the same
“mutant-killing” power, and thus improves confidence in
the software. To gather test cases from users’ executions,
monitoring could also capture state information for those
units (e.g., procedures or methods) associated with mutants
that would be killed during executions, and use them to cre-
ate unit test suites. These test suites, possibly mutation-
adequate, could then be saved and used to perform regres-
sion testing when the software is changed.

1.1 Mutation Testing and Remote Monitoring

Many researchers have developed techniques to reduce
the cost of mutation testing. One approach, the Mutant
Schemata Generation (MSG) technique [27], encodes all
mutants into one source-level program. At eachchange
point(a point where a mutation operator can be applied), the
program can be executed as a mutant. Amutant descriptor
indicates which mutation point is to be enabled and which
alternative is to be applied for that execution. By incorpo-
rating all mutants into one program, the technique reduces
the number of mutants that need to be compiled dramat-
ically, and makes mutation-testing tools less complicated
and easier to build. Furthermore, once the encoded pro-
gram is compiled, it is executed at compile speeds. Thus,
it achieves its mutation-testing goal faster than previous
mutation-testing techniques. Offutt and Untch propose a
general mutation testing process using theMSG method
that further reduces the cost of mutation testing by generat-
ing an encoded mutant program only for selective-mutation
operators [17]. Ma and colleagues proposedMUJAVA , an
MSG-based mutation-testing technique, that includes oper-
ators targeted at object-oriented features of Java programs
[11]. Although theMSG approach can reduce the cost of
mutation testing, it cannot be used directly for mutation test-
ing of deployed software because it rewrites the program so
that it can be run as mutants. Mutation testing in the field
must simulate the execution of mutants so that it can report
those that would be killed by executions.

Another approach to reducing the cost of mutation test-
ing is weak mutation, which was originally proposed by
Howden [7]. Instead of comparing results of entire exe-
cutions to determine whether the original and mutant pro-
grams differ, thus, killing the mutant usingstrong mutation,
weak mutationinspects the states of the original and mu-
tated programs at some intermediate state and deems the
mutant killed if these states differ. Weak mutation has been
studied theoretically (e.g., [6]), and studies suggest that it
can perform well as an indicator of strong mutation (e.g.,
[12, 14]). Like theMSG approach, weak mutation actually

executes the mutants instead of simulating their execution.
However, various forms of weak mutation could be used to
reduce the simulation of mutants in the field.

Previous research has developed techniques for monitor-
ing software after deployment. Orso and colleagues [21]
present a technique,GAMMA ,1 that uses a process called
software tomographythat divides the monitoring task into
subtasks. These subtasks are then assigned to different in-
stances of the deployed system, monitored as the system
executes, and combined to get a global view of the exe-
cuting system. Liblit and colleagues [9] present a differ-
ent approach that uses statistical sampling of software after
deployment to gather information that is then used in fault
localization. Although studies suggest the efficacy of these
techniques for gathering and using execution data for de-
ployed systems [8, 9, 18], they cannot be used directly for
mutation testing of deployed software. These techniques
record information about values of variables or coverage
of program entities during execution. In contrast, monitor-
ing for mutation testing must determine whether the mutant
would have been killed, without actually permitting the ex-
ecution of the mutant, which is a more complex analysis.

Previous research has also resulted in techniques for cre-
ating unit test cases from the execution of system (whole-
program) test cases—a form ofcapture-replay. Orso and
Kennedy [20] present a selective capture-replay technique
that records execution actions that are required to replay
designated units in isolation. Saff and colleagues [24]
present a similar approach that creates mock objects that
record the actions required to replay the designated units.
Elbaum and colleagues [2] proposed a capture-replay tech-
nique that gathers state information, instead of actions, re-
quired to replay the execution. They also present an appli-
cation of their technique that captures the state before and
after execution of each method in a Java program, and then
use these states to create unit test cases for regression test-
ing. To date, none of the existing techniques has been ap-
plied to deployed software. Furthermore, although these
techniques could be used to capture required information
that can be saved and reused for regression testing, they
capture information about all executions for every method.
Thus, the techniques create large test suites that may con-
tain many useless or redundant test cases with respect to a
testing criterion, such as the mutation-testing criterion.

1.2 Our Remote Mutation-Testing Technique

To facilitate mutation testing of deployed software and
to create unit test cases for use in regression testing, we de-

1We use the name Gamma for this type of testing and analysis to repre-
sent testing and analysis performed after Alpha and Beta testing and analy-
sis are completed. Whereas Alpha is performed in house and Beta is per-
formed on a subset of real users, Gamma is performed on all users in real
execution environments.



veloped, and present in this paper, a novel specialization
of the GAMMA technology. Our specialization, which we
call MUGAMMA , performs mutation testing in the field and
captures only useful test cases for regression testing. Like
GAMMA ’s software-tomography approach,MUGAMMA

divides the task of mutation analysis into subtasks—each
of which is responsible for a set of mutants—and assigns
these subtasks to different instances of the deployed sys-
tem. Unlike theGAMMA approach,MUGAMMA does
not simply monitor for coverage of certain aspects of the
execution—users of our instrumented software would not
tolerate crashes or incorrect output caused by executing ac-
tual mutated statements. Instead,MUGAMMA creates ver-
sions of the software that perform analysis and determine
whether an executionwouldhave killed a particular mutant
or set of mutants without actually executing the mutant (s)
on the user’s site. Using a capture-replay approach, simi-
lar to Elbaum and colleagues’ [2],MUGAMMA records the
states for those executions that kill mutants, and uses them
to create test cases for use in regression testing.

There are several benefits ofMUGAMMA . First, it lets
the developer gain confidence in the system. In the ab-
sence of bug reports, knowledge of executions that would
have killed mutants provides additional confidence in the
system over that gained by testing performed before de-
ployment. Second, in performing mutation testing after
deployment, some costs of mutation testing are mitigated.
Tasks such as generation of test data and execution of
large numbers of mutants are replaced by users’ executions
and MUGAMMA ’s ability to use these executions to de-
termine whether they would have killed mutants. Third,
MUGAMMA facilitates recording of the state—before and
after execution—for those inputs, at the unit level, that
would have killed a mutant(s). The test cases created from
these states are then sent back to the developer and com-
bined to create a test suite for use in regression testing.

The paper also presents our prototypeMUGAMMA Sys-
tem and discusses a case study performed on a Java pro-
gram. Our prototype system is a specialization of the
GAMMA framework to accommodate mutation testing and
capture of test cases. The core logic of the mutation-testing
specialization is based onMUJAVA , an object-oriented mu-
tation testing system [10, 11] that uses theMSG technique
[26, 27] to generate mutants.

The main contributions of the paper are:
• a specialization of theGAMMA System, called

MUGAMMA , that adapts a previous mutation testing
technique to provide mutation analysis of deployed ap-
plications;

• a technique that adapts existing capture-replay tech-
niques to gather test cases for use in regression testing;

• a prototype implementation ofMUGAMMA that uses
an efficient execution method for mutation testing con-
sisting of wrappers and mutant schemata.

Killed
Mutants

Program P

Mutant 
Operators

MuGamma
Policies

Client C1

Client C2

Client Cn

����

 

Test Cases

Server

MuGamma

Figure 1. User’s interaction withMUGAMMA .

2 Using theM UGAMMA System

Consider aMUGAMMA user who wants to deploy her
program so that, during executions of the program in the
field, mutation testing will continue to be performed on it
and test cases for use in regression testing can be created.
The user can employMUGAMMA to provision the program
so that when it is deployed to different clients, those client
executions will record and report information about mutants
that would have been killed, and create and return test cases
from state information about clients’ executions.

Figure 1 depicts such a use ofMUGAMMA for a program
P and set of clients{C1, C2, ..., Cn} who useP and will as-
sist in the mutation testing.2 The user has three inputs to
MUGAMMA : a programP, a set of Mutant Operators, and
a set ofMUGAMMA Policies. P is the program that the
user wants to be provisioned for monitoring and along with
P , she can specify those parts ofP for which she wants
mutants to be monitored. TheMutant Operatorsspecify
the mutant operators for which she wantsP to be moni-
tored during execution. TheMuGamma Policiesspecify the
user’s selected customization to create aMUGAMMA server
that will interact with the clients to manage activities such
as assignment of mutants to the clients, gathering of reports
from the clients, and creation of test cases from clients’ ex-
ecutions. The results will be the killed mutants and a set of
unit test cases created from the executions in the field.

There are four user-designated Policies3 that guide the
customization of the monitoring ofP when it is deployed
onCi’s sites: grouping, assignment, reporting, and comple-
tion. Thegroupingpolicy specifies how the mutants will be
grouped for a particular instance ofP. For example, all mu-
tants for the same method might be grouped so that they will
be assigned to and monitored by the same instance. Theas-
signmentpolicy specifies how the mutants will be assigned

2Of course, the user will need the clients’ permissions for participation.
3MUGAMMA can also provide a default set of Policies.



GammatizeProgram 
P

MutantMutantMutant Gamma 
subtask

Gamma 
subtask

 MuGamma
Subtask

Execute 
Subtask

Killed
Mutants

Generate 
Mutants

Mutant
Operators

Assign 
Subtasks

MuGamma/MuJava MuGamma/Server MuGamma/Client

Report 
MuGamma 

Result

Mutant 
Operators

MuGamma
Policies

Test 
Cases

Figure 2. Components of theMUGAMMA system.

as theCis requestP. For example, mutants or groups of mu-
tants could be assigned to instances in a round-robin fashion
or they could be assigned by the number of mutants that are
still live. The reporting policy specifies when the clients
will report information about the mutation testing back to
the user’s site. For example, the policy could specify time
intervals or occurrences of events, such as killing of mu-
tants. Finally, thecompletionpolicy specifies the criterion
for completion of the monitoring of the group assigned to
the client. For example, a group could complete when all
mutants in the group are killed or when some specified per-
centage of mutants are killed.

Section 3.2 provides additional details of the policies in-
cluding a complete set of current options.

3 SpecializingGAMMA for Mutation Testing

There are three main components of theMUGAMMA

system, as shown in Figure 2. The first component, Gen-
erate Mutants, inputs the programP, along with the user’s
specification of which parts ofP are to be mutated, and the
Mutant Operators specified by the user, and generates a ver-
sion of the program that encodes the mutants. Section 3.1
provides details of this component.

The next component, Gammatize, inputs the program
with the mutants encoded, and groups them into a set of
MUGAMMA subtasks according to the Policies specified by
the user. This step also creates the customizedMUGAMMA

Server using these Policies. Section 3.2 provides details of
this component.

The third component, Execute Subtask, executes the
gammatizedP in the field, determines which mutants have
been executed, and creates test cases for use in regression
testing. Section 3.3 provides details of this component.

3.1 Generating Mutants for MuGamma/MuJava

MUGAMMA cannot actually encode mutants in the pro-
gram for deployment. Thus, it must rewrite the code to cre-
ate versions wherein the execution of the deployed program
can determine whether a mutant would be killed without ac-
tually executing the mutant on the clients’ sites. On reach-
ing a methodm that is to be mutated, the new version of the
program will save the state before execution ofm, execute
m, and save the state after execution ofm. Then, it will
use the before state ofm to set the state for execution of the
mutant,mmut of m, executemmut, compare the after states
of m andmmut, and, if the states differ, report that mutant
as killed and save the before and after states for use as a test
case. This section presents the details of the rewriting of the
program to create these versions.

3.1.1 Capturing state for replay

To accommodate the additional behavior that the provi-
sioned program must possess, we rewrite the code to in-
clude wrappers to the methods on which mutation is to be
performed. These wrappers will receive messages sent to
the method and perform the required activities. To perform
these activities, we use three wrappers—a controlling wrap-
per, a generating wrapper, and a comparing wrapper.

Thecontrolling wrapperhas the same method signature
as the target methodm and thus, whenm is called dur-
ing execution, this wrapper will be called instead. The main
functionality of the controlling wrapper is to call the code to
execute mutants, if mutants assigned to that client are inm,
and call the original code form otherwise. To distinguish
the original code form from the wrapper code,m is rewrit-
ten to have the same signature and code but is given a new
name—m original. Mutants are distinguished by change
points, which designate a point in the program where a mu-
tant operator could be applied (and are described in more
detail in the next section). Because a method can have many
change points, each change point has its own identifier, ID.
If the controlling wrapper determines that ID in methodm
matches some mutant in the group assigned to this client,
the generating wrapper is called to continue the activities of
the mutation testing.

Thegenerating wrapperalso has the same method signa-
ture asm except that it is given the namem genwrapper.
m genwrapper saves the state, including parameters, be-
fore execution ofm’s code asSpre. The wrapper then calls
m implemented, which has the same body as the original
methodm except that all change points are replaced, using
theMSG technique, with method calls that handle the mu-
tation; this replacement is described in Section 3.1.2. After
execution ofm implemented, the return value and state are
saved asSpost



void m(param1, param2) {
· · ·
a = b + c; --> change point CP1 for AORB
· · ·
a = a + 1; --> change point CP3 for AORB
· · ·

}

Figure 3. Original methodm to be mutated.

void m(param1, param2) {
switch(ID) {
case CP1 :
case CP3 :

m_gen_wrapper(param1, param2);
break;

default :
m_original(param1, param2);

}
}
void m_gen_wrapper(param1, param2) {

save S_pre;
m_implemented(param1, param2);
save S_post;

}
void m_compare_wrapper() {

restore S_pre;
m_mutated(param1, param2);
compare with S_post;

}
Figure 4. The three wrappers generated form.

The third wrapper, thecomparing wrapper, is called for
each mutant, and facilitates execution of the mutant. This
wrapper,m comparewrapper, sets the state for the execu-
tion of the mutant asSpre (i.e., restores the state beforem
was executed) and calls another method,m mutated, that
executes the mutant.m comparewrapperexecutes in a sep-
arate virtual machine for each mutant. After executing the
mutant, the wrapper compares the resulting state withSpost.
If they differ, the mutant is reported as killed and both the
Spre and theSpost are saved for use as a test case.

To illustrate the wrappers, consider the original code for
a methodm that has two change points, CP1 and CP3,
shown in Figure 3. Now consider the three wrappers form,
shown in Figure 4. During execution, the client code calls
the controlling wrapper (m in Figure 4). The controlling
wrapper first checks whether any of the IDs assigned to that
client match the change points ofm. If the IDs match any
change points, the wrapper calls the generating wrapper,
m genwrapper. Otherwise, the wrapper calls the original
code,m original. Whenm genwrapper is called, it saves
the state beforem executes,Spre and callsm implemented,
which executesm’s original code and prepares and returns
information for the execution of the mutants by the com-
paring wrapper,m comparingwrapper. When the simu-
lation of the mutants occurs,m comparewrapperexecutes
the mutated code with the savedSpre from m’s execution as

void m_original(param1, param2) {
· · ·
a = b + c;
· · ·
a = a + 1;
· · ·

}
void m_implemented(param1, param2) {
· · ·
a =(ID==CP1)?AORBGen(b,c,’+’):b + c;
· · ·
a =(ID==CP3)?AORBGen(a,1,’+’):a + 1;
· · ·

}
void m_mutated(param1, param2) {
· · ·
a =(ID==CP1)?AORB(b,c,SM.op):b + c;
· · ·
a =(ID==CP3)?AORB(a,1,SM.op):a + 1;
· · ·

}
Figure 5. Original, implemented, and mutated versions
of m.

input, and compares the resulting state with the savedSpost

from m’s execution.

3.1.2 Encoding the mutants

Our encoding of mutants is based onMUJAVA [11], an ex-
isting tool for generating mutants for Java programs, and on
the MSG technique [26, 27]. TheMSG technique trans-
lates the program so that it encodes all selected mutants of
a statement into a function call—ametamutant—that can
act as any of the mutants. The program with all statements
changed to metamutants is called a metaprogram. Dur-
ing execution, a mutant descriptor designates which mutant
should be executed. Thus, the metaprogram along with a
mutant descriptor specifies a particular mutant.

To illustrate, consider one mutant operator—Arithmetic
Operator Replacement for Binary or AORB. With AORB,
for a statements containing an arithmetic binary opera-
tor, such as addition, subtraction, or multiplication, a mu-
tant is created by replacing the operator ins with each of
the other arithmetic binary operators. Thus, a statement
“A=B+C” could have mutants “A=B-C” or “A=B*C.” The
MSG approach creates a metamutant that encodes all these
mutants into one function call and contains a parameter,
chpt, indicating the change point in the program from which
AORB is called.4 Thus, “A=B+C,”, would be changed to
“A = AORB(B, C, ’+’, chpt)”. An associated mutant de-
scriptor, which specifies the change point and the alternative
that is to be executed at that point, instantiates a mutant.

Our approach for generating mutants is an adaptation
of the MSG approach. Like theMSG approach, we use

4We provide an intuitive description of theMSG method; details of the
method can be found in Untch’s dissertation [26].



function calls to perform the mutation. Unlike theMSG
method, we place these function calls in the code called
by the generating and comparing wrappers. Also, unlike
theMSG method, we use two function calls to perform the
mutation: one is the metamutant that is called to execute a
mutant, and is similar to the metamutants generated by the
MSG method; the other is the dynamic mutant generator
that performs some initial filtering of potential mutants and
generates metamutants for those that survive the filtering.

The dynamic mutant generatoris called by the gen-
erating wrapper throughm implemented. This function
executes the original code for the statement, but it also
evaluates each mutant at the point immediately after the
statement is executed (i.e.,very weak mutation). Because
the operands have already been evaluated to execute the
original statement, this evaluation using the other mutant
operands cannot cause side effects. If this very weak muta-
tion at the change point produces differences in the original
and mutated code, the results are returned to the client for
processing by the simulator.

When themetamutantis called by the comparing wrap-
per throughm mutated, the mutants encoded by that meta-
mutant are executed. The function executes the particular
mutant until the end of the method. Only those mutants that
were very weakly killed during them implementedcall are
reconsidered. During execution ofm mutated, the mutated
method is executed until its end, and the states of the orig-
inal and mutant are compared to see if the mutant is killed.
This additional execution to the end of the method provides
more confidence that the mutant would be strongly killed
than just considering the very weakly killed results.

As an example, consider again methodm of Figure 3,
its variations in Figure 5, dynamic mutant generator AOR-
BGen in Figure 6, and the metamutant for AORB in Fig-
ure 7. We can now see how the original statements in
methodm (Figure 3) are changed to createm implemented
and m mutated. m original contains the original version
of m, which shows two statements that will be mutated.
m implementedcontains the statements inm but theMSG
technique has been applied to them to create a function call
to AORBGen(). Function AORBGen() performs as indi-
cated in Figure 6. When AORBGen() is called (i.e., by
m implemented), the original code is executed and all the
mutants of that statement are evaluated. For any of these
mutants that differ after this evaluation (i.e., are very weakly
killed), those mutants are reported to the client for later
execution by the simulator. When AORB() is called by
m mutated, the mutated code is executed and a mutant of
that statement, one of reported mutants to the client, is eval-
uated. If the state after execution of the mutated code dif-
fers from that of original code, the execution information
and mutant is reported to the Client.

Algorithm 3.1: AORBGEN(lEx, rEx, op)

Ops = {Plus,Minus, Multi,Div, Mod}

original ←





lEx + rEx if op = Plus
lEx− rEx if op = Minus
lEx ∗ rEx if op = Multi
lEx / rEx if op = Div
lEx % rEx if op = Mod

for each t ∈ Ops



if op 6= t

then





SubMutant M = new SubMutant()
result = evaluatet(lEx, rEx)
M.setResult(result)
if result 6= original

then report M to the client
return (original)

Figure 6. Pseudo code for AORB Gen.

Algorithm 3.2: AORB(lEx, rEx, op)

Ops = {Plus,Minus, Multi,Div, Mod}

mutant ←





lEx + rEx if op = Plus
lEx− rEx if op = Minus
lEx ∗ rEx if op = Multi
lEx / rEx if op = Div
lEx % rEx if op = Mod

return (mutant)

Figure 7. Pseudo code for AORB metamutant.

3.1.3 Generating mutants

Generation of mutants is similar to that used by theMSG
method. For the generation, the program to be mutated
is input to MUGAMMA , which produces the parse tree.
Two supporting steps–the Change Point Finder and the Sta-
tic Analyzer—use the parse tree to rewrite the code. The
Change Point Finder searches for change points to which
given Mutant Operators are applied. For each of mutant op-
erators, it traverses the parse tree and, if a change point for
a mutant operator is found, it reports to the code generator.

The Static Analyzer performs its analysis to identify
which variables in the state before a method call need to
be saved. Thus, instead of saving, restoring, and comparing
the entire state space, only that part of the space required for
the execution of the mutant is saved. The Code Generator
generates mutant code using the information from these two
supporting steps. For that part of the source not containing
any change points, the Code Generator writes the same code



as original one. For that part of the source that has change
points, the Wrapper Generator generates new wrappers and
functions.

3.2 Gammatizing Mutants and Mutation Testing

BecauseMUGAMMA is a specialization of theGAMMA

framework, users can customize the monitoring activities
that will be performed on their deployed programs. Fig-
ures 1 and 2 show these asPolicies provided by the user
to MUGAMMA . Using these policies,MUGAMMA con-
figures theMUGAMMA Server so that it can perform ac-
tivities automatically and make decisions about the testing
and monitoring. There are currently four types of policies
for which the user provides input to configureMUGAMMA ;
other policies can easily be added.

Grouping Policy. The grouping policy specifies how
MUGAMMA elements—the smallest subtasks that are to
be monitored—are grouped together. For theMUGAMMA

specialization ofGAMMA , each generated mutant is a
MUGAMMA element. Thus, thegroupingpolicy specified
by the user, designates how these mutants will be grouped
into MUGAMMA groups. Currently inMUGAMMA , there
are four grouping policies:

• One-to-One. Each mutant is transformed into a
MUGAMMA Element and that Element itself is put
into aMUGAMMA Group.

• Same-operator. All mutants generated by a mutant op-
erator are transformed and grouped into aMUGAMMA

Group.
• Same-target. All mutants for a target class are trans-

formed and grouped into aMUGAMMA Group.
• Random. N mutants are selected randomly, with-

out any relationship to mutant operators or target
classes, and transformed intoMUGAMMA Elements
and grouped into aMUGAMMA Group.

Assignment Policy. When a user of the deployed soft-
ware executes aMUGAMMA Client, the client attempts
to connect to theMUGAMMA Server. If the connection
is successful, theMUGAMMA Server assigns one of the
MUGAMMA Groups, specified by the grouping policy. The
assignment policydetermines whichMUGAMMA Group is
assigned to the connecting client. Currently, there are three
assignment policies that can be specified:

• Round-robin. Groups are assigned in order of the con-
necting clients in a usual round-robin manner.

• Highest-mutant-score. Groups are given priority in as-
signment depending on the current mutant score (i.e.,
percentage of mutants reported as killed so far); the
group with the highest mutant score is assigned first.

• Lowest-mutant-score. Groups are given priority in as-
signment depending on the current mutant score (i.e.,
percentage of mutants reported as killed so far); the
group with the lowest mutant score is assigned first.

Reporting Policy. At one time, in theMUGAMMA net-
work, a MUGAMMA Server can be connected to many
MUGAMMA Clients. For efficient communication between
the Server and the Clients, thereporting policydetermines
when the Clients report their results to the Server. Currently,
there are two reporting policies that theMUGAMMA user
can specify:

• Time-based. Reporting is done in a time-based man-
ner. The user specifies the unit of time—in seconds,
minutes, hours, or days—in which the reporting will
be done.

• Event-based. Reporting is done after specified events
occur. Examples of events are the killing of a mutant
and the killing of all mutants assigned in that group.

Completion Policy. Without a stopping or completion
criterion, a MUGAMMA Client could continue monitor-
ing a MUGAMMA Group indefinitely. To avoid this, and
to facilitate reassignment of groups for better testing, a
MUGAMMA user can specify acompletion policy, which
indicates when theMUGAMMA Elements, Groups, and
Projects are considered to be completed.

• MuGamma Elements. The user can specify the level of
killing desired: not killed, very weakly killed (differ-
ence after the mutated statement), weakly killed (dif-
ference after the mutated method), or strongly killed
(difference after complete execution).

• MuGamma Groups. The user can specify the least
condition, to set the minimum number of complete
MUGAMMA Elements in thisMUGAMMA Group and
the number of duplicated executions desired.

• MuGamma Projects. The user can specify the least
condition for completing the project.

3.3 Executing a mutant

The provisioned program generated byMUGAMMA for
a programP consists of the three wrappers—controlling,
generating, and comparing—and the three method calls—
original, implemented, and mutated. These wrappers and
methods were described in detail in Section 3.1. This sec-
tion provides a detailed description of the execution of the
provisioned program in the field.

Figure 8 shows the process of executing mutants. As the
figure shows, the provisioned program, along with an ID in-
dicating a change point that is to be mutated, is launched by
what we call the “Software Executor,” the virtual machine



or processor on which the program will execute. When a
method that is to be mutated is called during execution, its
Controlling Wrapper is called instead. If the change point
and the ID do not match, the Original code is called, and the
program continues without evaluating mutants.

If the change point and the ID match, the Generating
Wrapper is called. The Generating Wrapper saves the state,
Spre before the implemented code is executed, and then
saves post state,Spost after the code is executed. On ex-
ecuting the implemented code, the software will reach the
pre-definedMSG method call. TheMSG method evalu-
ates a given expression and applies small changes, and then
compares the results of them; this is the very weak mutation
analysis. For every mutant that shows a difference (i.e., the
mutant is very weakly killed), the mutant is returned as a
submutant, which is one of the number of mutants at that
change point. The set of submutants, shown in the figure
as SM1, SM2, ..., SMN , is reported to the Client, along
with Spre andSpost, and are candidates for further muta-
tion analysis by the simulator. Note that filtering out those
mutants that are not very weakly killed results in a savings
because fewer mutants are executed by the simulator.

The Software Simulator now invokes a new virtual ma-
chine for each of the submutants, and launches a Compar-
ing Wrapper to execute it. For each of the submutants,Si,
the Comparing Wrapper restores the state of the original
method,Spre at that point, executes the mutant, and com-
pares the resulting state andSpost to see if the submutant
is killed. Because the virtual machine has its own mem-
ory space, the mutant execution does not interfere with the
execution of the program.

After comparing the states, the Comparing Wrapper re-
ports the result to the Client. If the submutant is killed, the
Comparing Wrapper returns the result and that mutant is
marked as killed. For any killed mutant, theSpre andSpost

are also used to create a test case that is also returned. If the
submutant is not killed, it is still live, and will be processed,
when possible, by other executions of the program by that
Client in the field. The user-inputMUGAMMA Policies de-
termine the duration of the Clients testing of particular mu-
tants.

4 M UGAMMA Prototype

We have implemented a prototype of theMUGAMMA

system and have begun to test it on several programs. This
section first describes the implementation ofMUGAMMA ,
and then presents a case study on two small subjects.

4.1 Implementation

MUGAMMA consists of four main subsystems:MU-
JAVA for MUGAMMA , SERVER, CLIENT, andMUGAMMA

 

� 
AORBGen(B,C,

�
+
�
)

� 

Implemented code

� 
AORB(B,C,SM1.op)

� SM1 
Spre, Spost

Software
Executor

Live Sub 
Mutants

Mutants

SM1, SM2, 
�, SMN

Spre, Spost

 

Mutated code

SM2

Spre, Spost

SMN

Spre, Spost

� 
AORB(B,C,SM2.op)

� 

� 
AORB(B,C,SMN.op)

� 

Comparing
Wrapper 

Software
Simulator

 

Comparing
Wrapper 

Comparing
Wrapper 

Controlling 
Wrapper

Program 
P

ID

� 
B + C
� 

Original code

����

 

����

 

Generating 
Wrapper

Figure 8. The process of executing mutants.

PLUG-IN.
The MUJAVA for MUGAMMA subsystem is an adapta-

tion of Ma and colleagues’ mutation-testing tool for Java
programs [11]. Our adaptation ofMUJAVA is an Eclipse
plug-in that integrates into the Eclipse IDE for Java program
development. This subsystem parses the Java program, des-
ignated by theMUGAMMA user. Like the originalMUJAVA

tool, ours uses the OpenJava library for rewriting Java code.
Unlike the original tool, ours has been adapted as an Eclipse
plug-in and our generation of the mutant code follows the
approach presented in Section 3. Currently, our subsystem
generates mutant code for the traditional mutant operators
for the Java language [11]; future work includes extending
our subsystem to include the class mutant operators [11].

The next two subsystems—theSERVER and the
CLIENT—are implemented using Eclipse Rich Client Plat-
form (RCP), which is a minimal set of plug-ins needed to
build an Eclipse application [25]. These subsystems pro-
vide the generalGAMMA functionality, and are configured
according to the Policies specified by theMUGAMMA user.
TheSERVERmanages the grouping and assignment accord-
ing to the user-specified policies, theCLIENT executes the
mutants that it has been assigned, and reports the results ac-
cording to the user-specified policies. Currently, our proto-
type does not return the pre- and post-state information re-
quired to create the regression test suites. TheSERVER then
makes the information available to theMUGAMMA user.

The fourth subsystem is the mainMUGAMMA PLUG-
IN, which contains the detailed specialized functionalities
of the system. This subsystem implements the Server cus-
tomization and transformations from the mutants generated
by theMUJAVA subsystem to theMUGAMMA elements, re-
quired for theSERVER. Additionally, this subsystem also
implements all steps required for executing the mutation
testing in the field. TheMUGAMMA PLUG-IN also con-



tains the library ofMSG methods.
Table 1 shows an overview of the metrics about the

MUGAMMA system. In the table, for each subsystem, the
second column gives the number of classes, the third col-
umn gives the number of methods, and the last column gives
the number of lines of code.

Table 1. Overview of theMUGAMMA System

Subsystem Classes Methods Lines of Code
MUJAVA for
MUGAMMA

90 731 11091

SERVER 104 566 6725
CLIENT 111 595 6625

MUGAMMA

PLUG-IN
82 452 8020

Total 387 2344 32461

4.2 Case Study

Because theMUGAMMA system is still under devel-
opment, we have not yet performed extensive empirical
studies on it to determine its efficiency and effectiveness.
However, as a first study, to begin to evaluate perfor-
mance, we have compared the mutant-generation phase of
MUGAMMA with the mutant-generation phase ofMUJAVA

[11].
For the study, we used two programs, Sudoku, a puzzle

board game, and Polynomial Solver. The first program con-
tains nine classes and 3363 lines of code, and the second
program contains eight classes and 454 lines of code. For
each program, we used bothMUJAVA andMUGAMMA to
generate mutants. We generated mutants only for the tra-
ditional mutant operators because this is the set of mutant
operators thatMUGAMMA currently implements. We used
MUJAVA to generate traditional mutant operators. For each
application, we measured the time required to generate the
set of mutants using each ofMUJAVA andMUGAMMA . Ta-
ble 2 gives the results for the programs. In the table, the sec-
ond and third columns show the results forMUJAVA and the
fourth and fifth columns show the results forMUGAMMA .
In each pair of columns, the Time in seconds and the num-
ber of Mutants generated is is shown for each application.
The table indicates that the number of mutants generated
by each technique differs for both applications. This dif-
ference occurs because, in its current implementation,MU-
JAVA fails to generate all mutants for some categories of
mutants.

Even with the difference in the number of mutants gen-
erated,MUGAMMA performs better thanMUJAVA for the
time to generate the mutants. This performance is partially
due to the use of theMSG method for the implementation
of MUGAMMA . In previous research [11], it was shown
that speed-up is achieved when theMSG technique is used

Table 2. A summary of generated mutants
MuJava MuGamma

Time(sec) Mutants Time(sec) Mutants
Sudoku 1138 2084 491 4826

Polynomial
Solver

109 224 56 620

to generate mutants. By using MSG method, the number
of generated files are reduced, so the total generation time
to write codes and compile them also are reduced. Be-
cause of the differences in the current implementations of
MUJAVA andMUGAMMA , we cannot make direct compar-
isons. However, the results show that, for these two appli-
cations,MUGAMMA is comparable toMUJAVA for gener-
ating mutants.

5 Conclusions and Future Work

In this paper, we have presented a novel technique that
facilitates performing mutation testing on software in the
field after deployment and gathering of state information
about those field executions that can kill particular mu-
tants for use in regression testing of the software when it
is changed. The system,MUGAMMA , is a specialization of
the GAMMA framework—it creates the instrumented ver-
sions of a program, and manages the deployment of the sys-
tem and reporting of the results.

This paper also describes our prototype implementation
of MUGAMMA . Our prototype currently implements only
the selective set of traditional mutants for Java [10]. We are
currently extendingMUGAMMA to include class mutants
[11]. In addition, our prototype version ofMUGAMMA cur-
rently does not implement the capture-replay and formation
of a set of regression test cases. Our future work includes
implementing this gathering of regression test suites.

This paper also presented a case study that showed,
for the two subjects studied, thatMUGAMMA can be ef-
ficient in generating mutants for remote monitoring. That
study gives an indication of the potential efficiency of
MUGAMMA for generating mutants. However, it does not
provide evidence of the efficiency ofMUGAMMA in gen-
eral or for larger subjects. Additional empirical studies will
need to be performed on larger and varied subjects to assess
this efficiency ofMUGAMMA in generating mutants.

Mutant generation is not the only time-consuming part of
mutation testing, and to date, we have not performed experi-
ments to determine the overhead imposed on clients. Future
work will include deploying a subject to clients, and exper-
imenting with different allocations of mutants to assess the
overhead and identify efficient configurations.



Acknowledgments

After his participation in Mutation 2000, Richard Lip-
ton suggested performing mutation testing in the field as a
way to let users of a system help with its validation. This
work was supported in part by National Science Founda-
tion awards under CCR-0096321, CCR-0205422, and SBE-
0123532 to Georgia Tech, by the State of Georgia to Geor-
gia Tech under the Yamacraw Mission, and by Brain Korea
21 Project.

References

[1] J. Bowring, J. Rehg, and M. J. Harrold. Active learning
for automatic classification of software behavior. InPro-
ceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 195–205, July 2004.

[2] S. Elbaum, H. Chin, M. Dwyer, and J. Dokulil. Carving
differential unit test cases from system test cases. Technical
Report TR-UNL-CSE-2006-0008, University of Nebraska-
Lincoln, March 2006.

[3] P. Frankl, S. Weiss, and C. Hu. All-uses versus mutation
testing: An experimental comparison of effectiveness.The
Journal of Systems and Software, 38(3), September 1997.

[4] R. Geist, A. J. Offutt, and F. Harris. Estimation and en-
hancement of rea-ltime software reliability through mutation
analysis.IEEE Trans. Comput., 41:550–558, May 1992.

[5] M. Haran, A. Karr, A. Orso, A. Porter, and A. Sanil.
Applying Classification Techniques to Remotely-Collected
Program Execution Data. InProceedings of the Euro-
pean Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(ESEC/FSE 2005), pages 146–155, Lisbon, Portugal, sep-
tember 2005.

[6] J. R. Horgan and A. P. Mathur. Weak mutation is probably
strong mutation. Technical Report SERC-TR-83-P, Purdue
University, December 1990.

[7] W. E. Howden. Weak mutation testing and completeness of
test sets. 8(4):371–379.

[8] J. A. Jones, A. Orso, and M. Harrold. Gammatella: Visualiz-
ing program-execution data for deployed software.Palgrave
Macmillan Information Visualization, 3(3):173–188, 2004.

[9] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. InProceedings of
the ACM SIGPLAN 2003 Conference on Programming Lan-
guage Design and Implementation, June 2003.

[10] Y. S. Ma, M. J. Harrold, and Y. Kwon. Evaluation of
mutation testing for object-oriented programs (poster). In
Proceedings of the IEEE/ACM International Conference on
Software Engineering, pages 78–81, May 2006.

[11] Y. S. Ma, A. J. Offutt, and Y. R. Kwon. Mujava: An au-
tomated class mutation system.Journal Software Testing,
Verification and Reliability, pages 97–133, June 2005.

[12] B. Marick. The weak mutation hypothesis. pages 190–199,
October 1991.

[13] A. P. Mathur and W. E. Wong. A theoretical comparison
between mutation and data flow based test adequacy criteria.
In Proceedings of the 22nd Annual ACM Computer Science
Conference, pages 38–45, March 1994.

[14] A. J. Offutt and S. D. Lee. An empirical evaluation of weak
mutation. 20(5):337–344, May 1993.

[15] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang. An experimen-
tal evaluation of data flow and mutation testing.Software—
Practice and Experience, 26(2):165–176, February 1996.

[16] A. J. Offutt and R. H. Untch. Mutation 2000: Uniting the or-
thogonal. InProceedings of Mutation 2000: Mutation Test-
ing in the Twentheth and the Twenty First Centuries, pages
45–55, October 2000.

[17] J. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf. An
expreimental determination of sufficient mutant operators.
In ACM Transaction on Software Engineering Methodlogy,
April 1996.

[18] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leverag-
ing field data for impact analysis and regression testing. In
Proceedings of the European Software Engineering Confer-
ence and ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Sept. 2003.

[19] A. Orso, J. Jones, and M. J. Harrold. Visualization of
program-execution data for deployed software. InProc. of
the ACM Symposium on Software Visualization, pages 67–
76, Jun 2003.

[20] A. Orso and B. Kennedy. Selective Capture and Replay of
Program Executions. InProceedings of the Third Interna-
tional ICSE Workshop on Dynamic Analysis (WODA 2005),
pages 29–35, St. Louis, MO, USA, May 2005.

[21] A. Orso, D. Liang, M. Harrold, and R. Lipton. Gamma Sys-
tem: Continuous Evolution of Software after Deployment.
In Proc. of the Int’l Symposium on Software. Testing and
Analysis, July 2002.

[22] C. Pavlopoulou and M. Young. Residual test coverage mon-
itoring. In Proceedings of the International Conference on
Software Engineering, pages 277–284, 1999.

[23] M. Rinard, C. Cadar, D. Dumitran, D. M. Troy, T. Leo, and
J. William S. Beebee. Enhancing server availability and se-
curity through failure-oblivious computing. InProc. of 6th
Symposium on Operating Systems Design and Implementa-
tion, San Francisco, CA, Dec 2004.

[24] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic
test factoring for Java. InASE 2005: Proceedings of the
20th Annual International Conference on Automated Soft-
ware Engineering, pages 114–123, Long Beach, CA, USA,
November 9–11, 2005.

[25] TheEclipseFoundation. Rich client platform at eclipsepedia.
http://wiki.eclipse.org/index.php/RichClient Platform.

[26] R. Untch. Schema-Based Mutation Analysis: A New Test
Data Adequacy Assessment Method. Ph.D. dissertation,
Clemson University, 1995.

[27] R. Untch, M. J. Harrold, and J. Offutt. Mutation analysis
using program schemata. InProc. of International Sympo-
sium on Software Testing and Analysis, Cambridge, Massa-
chusetts, June 1993.


