

Basic Operations for Generating Behavioral Mutants

Fevzi Belli1 Christof J. Budnik1 W. Eric Wong2
1 Department of Computer Science, Electrical Engineering and Mathematics,

University of Paderborn, Germany
2 Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083

{belli, budnik}@adt.upb.de ewong@utdallas.edu

Abstract

This paper attempts to subsume the existing great

variety of mutation operations to two basic operations,
insertion and omission and their combinations. These
basic operations are applied to different elements of
graph-based models of increasing representation
power. A case study applies the approach to these
models for generating mutants of different features and
compares the fault detection capacity of the mutants
generated.

1. Introduction, Related Work

A substantial task for performing mutation testing is
the definition of mutation operations in order to gener-
ate appropriate mutants. For white-box testing,
synonymously called implementation-oriented testing,
this can be done by systematic manipulation of the im-
plemented source code of the system under test (SUT).
For black-box testing, also called specification-
oriented testing, the specification of the SUT has to be
systematically manipulated to generate test cases.

This subject of this paper is specification-oriented
mutant generation to validate the behavioral specifica-
tion of SUT. Based on [1], the approach can also be
applied to implementation-oriented, white-box testing.
For lack of space, we will neglect the white-box view
and focus on black-box testing.

Models used in specifications are frequently graph-
based, e.g., finite state automata (FSA) and flow
graphs (see [2], [3], [4], and [5]). In this context, Event
Sequence Graphs (ESG) are less powerful than FSA;
nevertheless they are in many cases sufficient and
easy-to-use for specification and model-based testing
of reactive and interactive systems [6]. To explain the
idea as simply as possible, the paper begins with the
concept of ESG and extends it to introduce the graph
manipulation operations for insertion and omission of

graph elements. It then considers FSA in order to
consider the input/output aspects which ESG does not
include. Finally, the concept is extended to statecharts
which are also graph-based, but consider more
sophisticated aspects of SUT, such as hierarchy,
concurrency, etc. Thus, the subject and content of the
present paper are novel and not included in our
previous related work [1], [6], [7], [8], and [9].

ESG and FSA can be converted to regular
expressions and v.v., using algorithms well-known
from automata theory and formal languages (see [10],
[11], and [12]); similarly, statecharts can be converted
to extended regular expression [9]. Thus, the mutant
generation can be performed by means of either graph
manipulation operations or algebraic operations. This
is an important issue, because while many developers
favor a graphic visualization of SUT, others prefer the
algebraic view because the latter is likely to be more
compact and precise using the algebraic operations
entailed. Ideally, the specification is convertible, i.e.,
can be represented in whichever way is more favored
(graphic or algebraic).

Although the approach represented here has a close
affinity with the state based techniques, it is substan-
tially different from most of the well-known ones,
mainly because of its mutant generation capability.
Thus, most mutation operations known from the
literature, e.g., [13], [14], [15], [16], [17], [18], can
now be uniformly and compactly represented by the
mutation operations introduced here. In other words,
the mentioned approaches represent special cases of
the general fault model developed in this paper.
Conversely, mutants that can be generated by the
operations and their combinations introduced in this
paper are not necessarily included in the above
approaches.

The next section summarizes the formal
background of the approach; it introduces both the
terminology used and the concept of “complementing”

a given specification. This is exemplified using ESG,
as a first step to mutate a specification. The two basic,
binary mutation operations, “insertion” and “omis-
sion”, are introduced in Section 3 on elements of ESG,
i.e., arcs and events. These operations are sufficient to
systematically generate a broad class of mutants of the
given specification. The mutation power of those
operations is also compared in Section 3. Section 4
extends the approach, considering FSA and statecharts
– without necessitating a change of the mutation
operations introduced. Section 4 also compares the
approach with others. In Section 5, a case study
demonstrates the applicability of the approach and em-
pirically compares various strategies for selecting and
combining mutation operations. Finally, Section 6
summarizes the results and gives insight into our future
research.

2. Background, Terminology

Terminology concerning software and protocol
testing, mutation analysis, mutant killing, etc. is not
explained here; we assume this is not necessary for this
specific, test-oriented auditorium.

This work primarily uses event sequence graphs
(ESG) to represent the system behavior and the user’s
facilities for interacting with the system. Although
ESGs are generally applicable, they have favorably
been deployed for representing user interactions (UI)
and thus for testing interactive systems [7] [8].
Therefore, we will concentrate on the latter area.

2.1. Event Sequences, Event Sequence Graphs,
Complete Event Sequences

Basically, an event is an externally observable phe-
nomenon, such as an environmental or a user stimulus,
or a system response punctuating different stages of
the system activity. It is clear that such a representation
disregards the detailed internal behavior of the system,
hence, an ESG is a more abstract representation com-
pared to a state transition diagram of a finite-state
automaton (FSA) [10], [11]. Following, the notions
used in the approach are formally introduced.

Definition 1. An event sequence graph ESG = (V, E,
Ξ, Γ) is a directed graph with
V ≠ ∅ : a finite set of vertices (nodes),
E V V⊆ × : a finite set of arcs (edges),

, VΞ Γ ⊆ : finite sets of distinguished vertices
ξ∈ Ξ,and γ ∈ Γ, called entry nodes and exit nodes, re-
spectively, wherein v V∀ ∈ there is at least one se-

quence of vertices 0, , kv vξ … from each ξ Ξ∈ to vk

= v and one sequence of vertices 0, , ,kv v γ… from v0

= v to each γ Γ∈ with ()1,i iv v E+ ∈ , for
0, , 1i k= −… and ,v ξ γ≠ .

Ξ (ESG), Γ (ESG) represent the entry nodes and exit

nodes of a given ESG, respectively. To mark the entry
and exit of an ESG, all ξ Ξ∈ are preceded by a
pseudo vertex [∉V and all γ Γ∈ are followed by an-
other pseudo vertex]∉V. Without risking a misunder-
standing, we call those pseudo vertices entry and exit.

The semantics of an ESG is as follows. Any v ∈ V
represents an event. For two events v, v’ ∈ V, the event
v’ must be enabled after the execution of v if and only
if (v, v’) ∈ E.

The operations on identifiable components of the
UI are controlled and/or perceived by input/output de-
vices, i.e., elements of windows, buttons, lists, check-
boxes, etc. Thus, an event can be a user input or a sys-
tem response; both of them are elements of V and lead
interactively to a succession of user inputs and ex-
pected desirable system outputs.

Definition 2. Let V, E be defined as in Definition 1.
Then any sequence of vertices 0 , , kv v… is called an

event sequence (ES) if ()1,i iv v E+ ∈ , for
0, , 1i k= −… .

Note that the pseudo vertices [,] are not included in

the ESs. An ,i kES v v= of length 2 is called an event
pair (EP). Accordingly an event triple (ET), event
quadruple (EQ), etc. can be defined.

Figure 1. An ESG with its pseudo vertices [,]

Example 1. For the ESG given in Figure 1:

{ }, , V a b c= , { }aΞ = , { }bΓ = , and

{ }(,), (,), (,), (,)E a c a b b c c b= . Note that arcs from
pseudo vertex [and to pseudo vertex] are not included
in E.

Furthermore, α (initial) and ω (end) are functions
to determine the initial vertex and end vertex of an ES,
e.g., for ES= 0 , , kv v… , the initial vertex and end

vertex are () 0ES vα = , () kES vω = , respectively.
Finally, the function l (length) of an ES determines

the number of its vertices. In particular, if () 1l ES =
then iES v= is an ES of length 1.

Note that the pseudo vertices [and] are not consid-
ered in generating any ESs. Neither are they
considered to determine the initial vertex, end vertex,
or length of the ESs.

Example 2. For the ESG given in Figure 1, bcdc is
an ES of length 4 with the initial vertex b, end vertex
c.

Definition 3. An ES is a complete ES (or a complete
event sequence, CES), if ()ESα ξ Ξ= ∈ is an entry

and ()ESω γ Γ= ∈ is an exit.

Example 3. abc is a CES of the ESG of Figure 1.

CESs represent walks from the entry of the ESG to
its exit realized by the form: (initial) user inputs→ (in-
terim) system responses → … → (final) system re-
sponse.

Note that a CES may invoke no interim system re-
sponses during user-system interaction, i.e., it may
consist of consecutive user inputs and a final system
response.

Definition 4. A regular expression consists of sym-
bols, for example a, b, c, ..., of an alphabet Σ which
can be connected by operations

 Sequence (usually no explicit operation symbol,
e.g. “ab” means “b follows a”),

 Selection (“+”, e.g. “a+b” means “a or b”),
 Iteration (“*”, Kleene’s Star Operation, e.g.

 “a*” means “a will be performed arbitrarily”;
 “a+” means at least one occurrence of “a”).

Example 4. T = [(ab(c+d)+)*]

Based on algorithms known from automata theory
and formal languages, ESGs can be transformed to
regular expressions and v.v. [10], [11].

Example 5. An ESG that corresponds to the regular
expression T of the Example 4 is given in Figure 1.

2.2. Handling Context Sensitivity

When using ESGs to model an application, e.g., a
graphical user interface, there is often a need to use the
same command, or the same icon, for similar op-
erations in different contexts or in different
hierarchical levels of the application. An example is
the operation delete used for deleting a symbol, a
record, a file, etc. In such cases, the system usually
carries out the proper action using the context informa-
tion. The approach introduced, however, eliminates the
need for being explicit about the hierarchy information
in abstracting the real system into an ESG model.

Figure 2. Interaction ambiguities (caused by the double
occurrence of a) and their resolution through indexing

As an example, Figure 2 depicts an ESG that has
two different nodes with the same label a and there-
fore, can be initiated or triggered by the same input a.
While constructing the EPs and FEPs, and accordingly
the CESs and FCESs, one needs to differentiate be-
tween the node a that leads to b or c, and the node a
that can be reached via b and leads only to c. This
ambiguity can be resolved simply by indexing, for ex-
ample, a1 identifying the first appearance of a, and a2
identifying the latter one. This indexing implies the
syntactical, or contextual, position and can help with
the reconstruction of different hierarchical levels that
have been “flattened” in the course of modeling.

2.3. Complementing the ESG

Definition 5. For an (, , ,)ESG V E Ξ Γ= , its comple-

tion is defined as n lESG (V ,E, ,)Ξ Γ= with lE V V= × .

Definition 6. The inverse (or complementary) ESG is
then defined as ESG (V ,E, ,)Ξ Γ= with lE E \ E= .

Figure 3 (b) illustratesnESG , which can systematically
be constructed in three steps:

 Add arcs in the opposite direction wherever only
one-way arcs exist.

 Add self-loops to vertices wherever none exist.
 Add two-way arcs between vertices wherever no

arcs connect them. Note that they are drawn bi-
directionally.

ESG (the inversion of the ESG) consists of arcs
that will be added to the ESG to construct the nESG
(completion of the ESG).

(a) Inversion

(b) Completion

Figure 3. Inversion ESG and completion nESG with
nESG ESG\ ESG= of Figure 1

Definition 7. Any EP of the ESG is a faulty event pair
(FEP) for ESG.

Example 6. ba of the given ESG in Figure 3 is a
FEP.

Definition 8. Let 0 , , kES v v= … be an event se-

quence of length 1k + of an ESG and ,k mFEP v v=

a faulty event pair of the corresponding ESG . The con-
catenation of the ES and FEP then forms a faulty event
sequence 0, , ,k mFES v v v= … .

Example 7. For the ESG given in Figure 3, aba is an
FES of length 3.

Definition 9. An FES is complete (or a faulty complete
event sequence, FCES) if ()F E Sα ξ Ξ= ∈ is an
entry. The ES as part of a FCES is called a starter.

Note that Definition 9 explicitly points out that a
FCES does not finish at an exit, unlike a CES that must
finish at an exit.

Example 8. For the ESG given in Figure 3, the FEP
db of the ESG can be completed to the FCES abdb
by using the ES ab as a starter. Note that the [is not
included in the FCES as it is a pseudo vertex.

The starter ab in Example 8 is arbitrarily chosen,
and hence the variation in length of an FCES is always
attributable to starters prior to this special FEP under
consideration. The result is then FCESs of various
lengths. Thus, the “length” in the test process primarily
relates to the CESs.

3. Operations to Generate Mutants – an
ESG View

Assuming that the given ESG correctly specifies the
expected, desirable behavior of the SUT, the comple-
mented ESG can be used to generate mutants of the
system, i.e., to specify erroneous, undesirable situa-
tions. In other words, to describe, how the system is
not supposed to behave.

The given ESG can be changed by manipulating
either the arcs or the events. As the arcs are primarily
responsible for correctly sequencing the events, we
start with arcs for manipulation of the ESG before we
manipulate the number and structure of the events.

3.1. Arc Manipulation

Basically, we can generate arc mutants of an ESG
in that (between both events of any EP in an ESG) we

 insert an extra arc in any direction, without caus-
ing a multiple arc in the same direction (arc in-
sertion, aI-operation), or

 omit an existing arc (arc omission, aO-opera-
tion).

Note following:
 Applying the aI-operation to all EPs of an ESG

produces its inversion ESG and leads to the

completion nESG of the ESG given. Based on
nESG and using the algorithms given in [8]
FCESs can systematically be generated to obtain
mutants.

 Applying the aO-operation to all EPs of an ESG
generates ES of various lengths that are mutants
to simulate incomplete paths, i.e., deadlocks.

 Corruption (aC-operation) of an existing arc be-
tween an EP, i.e., changing its direction, can be
represented by omission of this arc, immediately
followed by insertion of an arc of opposite direc-
tion.

aI- and aO-operations can be applied to an ESG re-
peatedly, e.g.., n times. This is represented as aIn and
aOn. They can also be combined arbitrarily, e.g., three
arcs inserted or two arcs deleted; represented by aI3 +
aO2. “+” represents the choice as inclusive or.

3.2. Event Manipulation

Manipulation of events of an ESG is more intricate
than manipulating its arcs. Event mutants of an ESG
can be generated in that (between the events of an EP)
we

 insert an extra event (event insertion, eI-opera-
tion), or

 omit an existing event (event omission, eO-
operation).

Insertion of an event e that is included in the event
set V leads to an intrinsic mutant, whereas e∉ V leads
to a non-intrinsic mutant.

It is evident that
 eI-operation requires adding extra arcs to/from

the inserted event from/to all other nodes, and
 eO-operation requires that all arcs to/from the

omitted event be deleted in order to avoid arcs
that originate from or lead to nowhere.

Note the following:
 Event insertion extends the ESG whereas event

omission reduces it.
 Corruption (C-operation)of an existing event in

an ESG, i.e., replacing it, can be represented by
omission of this event, immediately followed by
insertion of a replacement event.

eI- and eO-operations can be applied to an ESG re-
peatedly, e.g., n times. This is represented as eIn and
eOn. They can also be combined arbitrarily, e.g., three
events inserted or two events deleted; represented by
eI3 + eO2.

3.3. Event Manipulation vs. Arc Manipulation

An open question now to be discussed is the “muta-
tion power” of the manipulation operations introduced
in the previous section. This is necessary to avoid
multiple generations of the same mutants by different
manipulation operations, a problem which would
unnecessarily waste the test budget.

Lemma 1. Any set of mutants generated by a set of
aO-operations can also be generated by a set of eO-
operations.

This is true because deleting events also deletes per
definition the arcs. Accordingly, events and arcs to be

deleted can be selected to form the set of mutants
required. �

Lemma 2. The set of mutants generated by eI-opera-
tion is disjointed (different) than the set of mutants
generated by aI-operation.

Event insertion is performed twofold:
 Insertion of an event that is not included in the

event set V (non-intrinsic mutant): The arcs are
then newly created and thus cannot be included
in the set of mutants generated by aI-operation.

 Insertion of an event that is included in the event
set V (intrinsic mutant): As explained in Section
2.2, such events are indexed and thus handled as
extra events, i.e., the same way as they were not
included in the event set V.

Either way, eI-operation creates new arcs that can-
not be included in the former ESG. �

4. Extending the ESG View and Algebraic
Way for a Uniform Representation

The mutation operations introduced in the previous
section can be applied also to specifications of higher-
level order. This section adapts and exemplifies the in-
troduced basic operations to extend the approach to
FSA and statecharts.

4.1. Considering States and Outputs – Ex-
tending to FSA

Traditional finite-state automata (FSA as Moore
automata) consist of states and transitions labeled by
inputs, and in the case of a Mealy machine, also out-
puts. An ESG is a finite, memoryless device, in the
sense that it consists of a finite set of nodes and
vertices, and the transitions are unlabeled. In other
words, states and inputs/outputs of a FSA are merged
to derive the corresponding ESG. This merging
considerably simplifies the fault modeling.

As an example, Figure 4, (b) represents the ESG of
Figure. 4 (a) as an FSA, which is then completed by a
fault state (Figure 4, (c); see also [10], [11], and [12]).

(a) A simple ESG

(b) FSA which is equivalent to the ESG of (a)

(c) Completed FSA of (b)

Figure 4. Completing an FSA

If the underlying ESG has n vertices, the corre-
sponding CESG has at most n2 edges that connect each
of the n vertices with every other vertex, including the
self-loops. The ESG in Figure 4 (a) has two events,
leading to a total of 4 edges (22 = 4) of its CESG, with-
out counting the entry and exit nodes. Assuming that
the corresponding FSA in Figure 4(b) has three states
and an input alphabet of two symbols, a and b, the
corresponding, completed FSA (CFSA) is given in
Figure 4 (b) with an extra state fault. For the sake of
simplicity, edges are allowed to be associated with
multiple inputs, e.g., with both a and b. Evidently, a
CFSA with n states and an input alphabet of the
cardinality m has m n⋅ edges (again, without counting
the entry and exit edges). Thus, the example CFSA in
Figure 4 has a total of 6 edges (2·3 = 6); with the edge
labeled with two inputs counted as a double edge.

Mutation operations for insertion and omission of
states, transitions, inputs, outputs (as events) are de-
fined in analogy to the operations introduced in
Section 3.

A system model and fault model based on FSA can
algebraically be represented by means of regular
expressions, similar to ESG. We omit those
explanations and refer to [10], [11].

4.2. Considering Concurrency, Communication
and Hierarchy Aspects – Extension to State-
charts

Statecharts [19] are widely accepted, e.g., adopted
in UML notation, for system modeling. Based on our
previous work [9] and in analogy to Section 3, we
complement the given statechart by inserting an error
state and faulty transitions (Figure 5). The notations
error state and faulty transition are used for explicitly
describing the faulty behavior of the modeled system.

Figure 5. Fault model - error state and faulty transition

Faulty transitions run from each state of diagram to
an error state caused by the events that trigger no (le-
gal) transition in the context of this state. In Figure 5,
only the (legal) transition t3 can be triggered when the
system is in state s1. Therefore, the faulty transition
from state s1 to the error state is triggered by the faulty
transitions t1, t2, or t4, if the transition set is given by {t1,
t2, t3, t4}. The transitions represented by dashed lines are
faulty ones. To generate the faulty guarded transitions
the guards have to be negated, if existing.

Operations for insertion and omission of states, his-
tory states, transitions, etc. can be defined in analogy
with Section 3.1 and 3.2. Moreover, system models
and fault models can algebraically be represented by
means of extended regular expressions. We omit those
explanations and refer to [9], [13].

“Guards” of the transitions are represented in state-
charts by Boolean expressions. They are mutated by
negation, and thus the transitions are attributed to error
state(s) accordingly. Therefore, they do not need extra
handling.

4.3. Algebraic Representation

For generalization of the mutation operations, we
introduce the notion element which subsumes the no-
tions arcs, events, inputs, outputs, states, history states,
transitions, etc. Mutants can be generated in that (be-
tween two elements) we

 insert an extra element (insertion, I-operation),
or

 omit an existing element (omission, O-opera-
tion).

Insertion of an element e that is included in the ele-
ment set V leads to an intrinsic mutant, whereas e∉ V
leads to a non-intrinsic mutant.

Based on Definition 2 in Section 2, we generalize
the notion ES (event sequence) to element sequence
(ElS) and summarize the operations for mutant genera-
tion as follows:

Note that a C-operation can be represented by an O-
operation followed immediately by an I-operation,
with a different element being inserted for the omitted
element.

When applied to the elements of an ESG, FSA, or
statechart, the mutation operations are capable of de-
livering mutants to simulate a variety of defects, e.g.,
whether a transition is missing as a result of a defect of
the next state function, or if an output is missing or
corrupted, since the output function does not work
properly, etc. In analogy to previous sections, the
mutation operations can be extended from single
manipulations to multiple (n) ones:

 In-operation – n elements inserted.
 On-operation – n elements omitted.
 Cn-operation – n elements corrupted.

Finally, to represent arbitrary types of mutants
within the context of a finite-state model, an appropri-
ate combination of these operations, e.g., “an element
is omitted, or inserted, or two elements have been in-
terchanged” can be represented by

I+O+C2
where “+” represents the logical operator for inclusive
or. In this context, an element can be a transition, a
state, etc.

The described fault model can generate many
classification schemes for coverage, as will be shown
in the next section.

4.4. Comparison with Other Approaches

Based on mutation operations introduced in the pre-
vious sections, many of the existing mutant generation
techniques can be represented in a uniform way. As an
example, we refer to [13], [14], [15], which introduced
37 operators for mutant generation. All of those can be
represented by I- and O-operations or their multiple
applications and combinations, as follows.

 Missing arc, transition, event, state, input, history
state, etc.: O-operation.

 Extra arc, transition, event, state, input, history
state, etc: I-operation.

 Exchanged arc, transition, event, state, input, his-
tory state, etc: O-operation immediately followed
by I-operation.

5. Case Study

This case study deploys different strategies to gen-
erate mutants, varying mutation operators, etc. on one
side, and modeling techniques on the other side.

5.1. System under Test

The control terminal of a marginal strip mower
(RSM 13, Figure 6), which controls the vehicle in a
way that takes optimum advantage of mowing around

guide poles, road signs and trees, is considered.
Operation is effected either by the power hydraulic of
a light truck, or by the front power take-off. Further
buttons on the control desk (Figure 6) simplify the
operation, so that, e.g., the mow head returns to
working position or to transport position when a button
is pressed.

Figure 6. The vehicle (RSM 13) and its control terminal

As a first step, i.e., for the highest level, a total of
five ESGs of SUT are produced. This set of ESGs is
then incrementally extended and refined with lower
level details. Each of the desirable events defines a
system function that must be well understood and pre-
cisely represented in a corresponding ESG at an appro-
priate level of granularity.

The ESG in Figure 7 represents the top level of the
GUI (graphic user interface) of the display unit de-
picted in Figure 6 which enables the user to interact
with the working position (work. pos.) of the mover.
The head of the mover can be shifted left or right
depending on the pressure (pres.) being on or off to
keep the mover head on the bottom. The pressure must
be activated before the cutter can be started; otherwise
damage is likely on objects that are close to the

vehicle. Upon completely carrying out the cutting
process the cutter has to be switched off to move the
mover into the transport position (trans. pos.).

Figure 7. An ESG to illustrate the interaction between
the cutting unit and the pressure

5.2. Testing with Mutants Generated by ESGs

As already proved in Lemma 1 in Section 3.3, the
generated mutants of aO-operations constitute a subset
of the eO-operations. Therefore, we focus here on the
generation of mutation by aI-, aO- and eI-operations.
Based on the ESG given in Figure 7 the mutants can be
generated as follows. Applying the aI-operation to the
ESG in Figure 7 produces the inversion of the ESG
and leads to the completion ESG given in Figure 8.

An algorithm is given in [8] to generate FCESs (see
Definition 9, Section 2) the total length of which is
minimal to cover FESs of a given length. We recall
that FCESs represent mutants and use this algorithm to
systematically generate mutants, e.g., the faulty ElS
(element sequence) “[RSM work.pos. shiftleft
work.pos.] ”.

[8] also includes an algorithm to construct CESs
which represent minimal walks (A walk is a complete
ElS that starts in [and terminates in]). Applying the
aO-operation to the ESG of Figure 7 generates ElS of
various lengths, i.e., the assumption holds that after
deleting an arc the resulting graph further represents an
ESG. Otherwise, incomplete paths would have been
generated which would contradict. As an example, re-
moving the arc from RSM13 to work.pos. of Figure 7
would lead to the ESG with the ElS “[RSM13 <=]”

as a mutant generated by aO-operation. However, “[
RSM13 <=]” is a valid ElS, and thus not a mutant.

Figure 8. Completion ESG of Figure 7 (“[“: entry, “]“:
exit)”

Figure 9. Insertion of extra events for mutation genera-
tion by eI-operation.

For the generation of mutants by eI-operations the
ESG has to be extended by an extra event. This extra
event requires additional arcs for mutation generation
from the extra event to all other events and from all

other events to the extra event. This is illustrated in
Figure 9, e.g., the mutant “[RSM13 work.pos.
pres.on work.pos.” is generated by eI-operation.

For a comprehensive testing, several strategies have
been developed with varying mutant operations, re-
sulting in 826 tests which were semi-automatically car-
ried out by a student tester. The test process revealed a
total of 21 faults, including some severe ones (Table
1).

Table 1. Three of the detected faults of the RSM control
terminal

No. Faults Detected by the mutants

1.

The cutting unit can be activated without having
any pressure on the bottom, which is very danger-
ous if pedestrians approach the working area (Ac-
cording to the dashed (faulty) arc from “pressure
OFF” to “cutter ON” in Figure 8).

2.

Keeping the button for shifting the mow head
pushed and changing to another screen causes
control problems of shifting: The mower head
with the cutting unit cannot immediately be
stopped in an emergency case.

3. Restarting the hydraulic gear while it is already
running can cause serious damage.

Table 2 summarizes the analysis of the fault detec-

tion. The mutants generated by aI-operation were more
effective in revealing faults than the mutants by aO- or
eI-operations. The mutants by eI-operation could not
detect any fault. This is because the ESG does not in-
clude indexed events. In the case of a non-intrinsic
mutant the extra event is not included in V and thus
could not be determined by the tester. The faults de-
tected by the mutants generated by aO-operations are
those that still remain in a valid ESG after deleting an
arc. Otherwise, the generated mutants traverse only a
sub-sequence of a sequence, possibly of a walk which
can still represent a legal sequence.

Table 2. Detected faults by different mutant operations

mutant operation aI aO eI
detected faults 15 6 0

5.3. Testing with Mutants Generated by State-
charts

Figure 10 represents a statechart that visualizes the
functionality described by the ESG in Figure 7. The er-
ror state is included that enables the application of
mutation operations introduced in sections 3.1 and 3.2.

As an example, we omit the arc (transition) T20. This
corresponds with the omission of the arc from
press.Off to trans.pos. of the ESG in Figure 7. The
omission of the transitions from and to an event in the
statechart has the same effect of the omission of an
event in an ES. This also holds for the insertion
operation.

Figure 10. Statechart of the RSM to visualize the inter-
action between the cutting unit and the pressure.

5.4. Mutants Generated by ESGs vs. Mutants
Generated by Statecharts

For a comparison of the fault detection capability of
the mutants generated by ESG and statechart, we
carried out following tests.

(i) For the case study described above, the same
group of student testers collectively constructed
a set of both ESGs and statecharts, generated
mutants, and performed the tests.

(ii) While a group of student testers constructed
ESGs generated mutants and performed the
tests, a second group did the same using
statecharts.

Surprisingly, the comparison of the fault detecting
capability of ESGs vs. statecharts could not point out
any significant tendency to favor either the ESG or the
statechart, but confirmed the effectiveness of mutants’
generation by different strategies when properly ap-
plied to different modeling methods.

For lack of space, details of the case study cannot
unfortunately be included in this paper; some results
are been briefly summarized here.

6. Conclusions, Further Work

Based on a general fault model, the previous
sections introduced two basic operations, insertion and
omission, and applied them to elements, i.e., nodes and
arcs of graph-based models of increasing
representation power. More precisely, we considered
ESG, FSA, and statecharts. The mutant generation
features of the basic operations (when applied to
different elements of the graphs) are compared.
Centered on an industrial project, a case study
compared the fault detection capacity of the mutants
generated using the different models. The most
significant results are:

 The variety of most of the existing mutation op-
erations can be represented by appropriate
combinations of the basic operations introduced.

 Mutants based on ESG and mutants based on
statecharts do not differ much in their fault
detection capability.

Our ongoing work studies optimization aspects of
mutants subject to their costs, given by their length,
number, etc. and coverage capability of different
elements of the models. Empirical analysis methods
are also considered.

References

[1] Gossens, S., Belli, F., Beydeda, S., DalCin, M., “View
Graphs for Analysis and Testing of Programs at Different
Abstraction Levels”, Proc. of High-Assurance Systems Engi-
neering Symposium – HASE 2005, IEEE Comp. Society
Press, 2005; pp. 121-130.

[2] Parnas, D.L., “On the Use of Transition Diagrams in the
Design of User Interface for an Interactive Computer Sys-
tem”, Proc. of ACM Nat’l. Conf., ACM Press 1969; pp. 379-
385.

[3] Shehady, R.K.; Siewiorek, D.P., “A Method to Auto-
mate User Interface Testing Using Finite State Machines”,
Proc. Int. Symp. Fault-Tolerant Computing, 1997; pp. 80-88.

[4] Offutt, J.; Shaoying, L.; Abdurazik, A.; Ammann, P.,
“Generating Test Data From State-Based Specifications”,
Journal of Software Testing, Verification and Reliability,.
John Wiley & Sons, vol. 13(1), 2003; pp. 25-53.

[5] White, L.; Almezen, H., “Generating Test Cases for
GUI Responsibilities Using Complete Interaction Se-
quences”, Proc of Int. Symp. on Softw. Reliability and Eng.,
IEEE Comp. Press, 2000; pp. 110-119.

[6] Belli, F., “Finite-State Testing and Analysis of
Graphical User Interfaces”, Proc. of Int. Symp. on Softw.
Reliability and Eng., IEEE Comp. Press, 2001; pp. 34-43.

[7] Belli, F.; Budnik, C. J.; White, L., “Event-based Model-
ing, Analysis and Testing of User Interactions: Approach and
Case Study”, Journal of Software Testing, Verification and
Reliability, John Wiley & Sons, vol. 16(3), 2006, pp. 3-32.

[8] Belli, F.; Budnik, C. J., “Minimal Spanning Set for
Coverage Testing of Interactive Systems”, Proc. of Int.
Colloquium on Theoretical Aspects and Computing, LNCS,
vol. 3407, 2004; pp. 220-234.

[9] Belli, F., Budnik, Ch. J., Hollmann, A., “Holistic
Testing of Interactive Systems Using Statecharts”, Journal of
Mathematics, Computing & Teleinformatics (AMCT), vol.
1(3), 2005, pp. 54-64.

[10] Gill, A., Introduction to the Theory of Finite-State Ma-
chines, McGraw-Hill, 1962.

[11] Salomaa, A., Theory of Automata, Pergamon Press,
1969.

[12] Tennent, R.D., Specifying Software, Cambridge Univ.
Press, 2002.

[13] Fabbri, S.C.P.F., Maldonado, J.C., Sugeta, T., Masiero,
P.C., “Mutation Testing Applied to Validate Specifications
Based on Statecharts”, Proc. 10th International Symposium
on Software Reliability Engineering, 1999, pp. 210-217.

[14] Delamaro. M.E., Maldonado, J.C., Mathur, A.P., “Inter-
face Mutation: An Approach for Integration Testing”, IEEE
Trans. Software Eng., vol. 27(3), 2001, pp. 228-247.

[15] Fabbri, S.C.P.F., Maldonado, J.C.,Delamaro, M.E., Ma-
siero, P.C., “Mutation Analysis Testing for Finite-State
Machines”, Proc. 5th International Symposium on Software
Reliability Engineering, 1994, pp. 220-229.

[16] Chow, T.S., “Testing Software Designed Modeled by
Finite-State Machines”, Softw. Eng. IEEE Trans., vol. 4,
1978; pp. 178-187.

[17] Bochmann, G.V., Petrenko, A., “Protocol Testing: Re-
view of Methods and Relevance for Software Testing.”,
Proc. of Int. Symp. on Software Testing and Analysis, ACM
Press, 1994; pp. 109-124.

[18] Sarikaya, B., “Conformance Testing: Architectures and
Test Sequences”, Computer Networks and ISDN Systems, El-
sevier Science Publishers, vol. 17, 1989; pp. 111-126.

[19] D. Harel, A. Naamad, “The STATEMATE Semantics of
Statecharts”, ACM Trans. Softw. Eng. Meth. (TOSEM), vol.
5(4), 1996, pp. 293-333.

