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Abstract 

 
This paper attempts to subsume the existing great 

variety of mutation operations to two basic operations, 
insertion and omission and their combinations. These 
basic operations are applied to different elements of 
graph-based models of increasing representation 
power. A case study applies the approach to these 
models for generating mutants of different features and 
compares the fault detection capacity of the mutants 
generated. 
 
1. Introduction, Related Work 
 

A substantial task for performing mutation testing is 
the definition of mutation operations in order to gener-
ate appropriate mutants. For white-box testing, 
synonymously called implementation-oriented testing, 
this can be done by systematic manipulation of the im-
plemented source code of the system under test (SUT). 
For black-box testing, also called specification-
oriented testing, the specification of the SUT has to be 
systematically manipulated to generate test cases. 

This subject of this paper is specification-oriented 
mutant generation to validate the behavioral specifica-
tion of SUT. Based on [1], the approach can also be 
applied to implementation-oriented, white-box testing. 
For lack of space, we will neglect the white-box view 
and focus on black-box testing. 

Models used in specifications are frequently graph-
based, e.g., finite state automata (FSA) and flow 
graphs (see [2], [3], [4], and [5]). In this context, Event 
Sequence Graphs (ESG) are less powerful than FSA; 
nevertheless they are in many cases sufficient and 
easy-to-use for specification and model-based testing 
of reactive and interactive systems [6]. To explain the 
idea as simply as possible, the paper begins with the 
concept of ESG and extends it to introduce the graph 
manipulation operations for insertion and omission of 

graph elements. It then considers FSA in order to 
consider the input/output aspects which ESG does not 
include. Finally, the concept is extended to statecharts 
which are also graph-based, but consider more 
sophisticated aspects of SUT, such as hierarchy, 
concurrency, etc. Thus, the subject and content of the 
present paper are novel and not included in our 
previous related work [1], [6], [7], [8], and [9]. 

ESG and FSA can be converted to regular 
expressions and v.v., using algorithms well-known 
from automata theory and formal languages (see [10], 
[11], and [12]); similarly, statecharts can be converted 
to extended regular expression [9]. Thus, the mutant 
generation can be performed by means of either graph 
manipulation operations or algebraic operations. This 
is an important issue, because while many developers 
favor a graphic visualization of SUT, others prefer the 
algebraic view because the latter is likely to be more 
compact and precise using the algebraic operations 
entailed. Ideally, the specification is convertible, i.e., 
can be represented in whichever way is more favored 
(graphic or algebraic).  

Although the approach represented here has a close 
affinity with the state based techniques, it is substan-
tially different from most of the well-known ones, 
mainly because of its mutant generation capability. 
Thus, most mutation operations known from the 
literature, e.g., [13], [14], [15], [16], [17], [18], can 
now be uniformly and compactly represented by the 
mutation operations introduced here. In other words, 
the mentioned approaches represent special cases of 
the general fault model developed in this paper. 
Conversely, mutants that can be generated by the 
operations and their combinations introduced in this 
paper are not necessarily included in the above 
approaches. 

The next section summarizes the formal 
background of the approach; it introduces both the 
terminology used and the concept of “complementing” 



 

 

a given specification. This is exemplified using ESG, 
as a first step to mutate a specification. The two basic, 
binary mutation operations, “insertion” and “omis-
sion”, are introduced in Section 3 on elements of ESG, 
i.e., arcs and events. These operations are sufficient to 
systematically generate a broad class of mutants of the 
given specification. The mutation power of those 
operations is also compared in Section 3. Section 4 
extends the approach, considering FSA and statecharts 
– without necessitating a change of the mutation 
operations introduced. Section 4 also compares the 
approach with others. In Section 5, a case study 
demonstrates the applicability of the approach and em-
pirically compares various strategies for selecting and 
combining mutation operations. Finally, Section 6 
summarizes the results and gives insight into our future 
research. 
 
2. Background, Terminology 
 

Terminology concerning software and protocol 
testing, mutation analysis, mutant killing, etc. is not 
explained here; we assume this is not necessary for this 
specific, test-oriented auditorium. 

This work primarily uses event sequence graphs 
(ESG) to represent the system behavior and the user’s 
facilities for interacting with the system. Although 
ESGs are generally applicable, they have favorably 
been deployed for representing user interactions (UI) 
and thus for testing interactive systems [7] [8]. 
Therefore, we will concentrate on the latter area. 
 
2.1. Event Sequences, Event Sequence Graphs, 
Complete Event Sequences 
 

Basically, an event is an externally observable phe-
nomenon, such as an environmental or a user stimulus, 
or a system response punctuating different stages of 
the system activity. It is clear that such a representation 
disregards the detailed internal behavior of the system, 
hence, an ESG is a more abstract representation com-
pared to a state transition diagram of a finite-state 
automaton (FSA) [10], [11]. Following, the notions 
used in the approach are formally introduced. 
 
Definition 1. An event sequence graph ESG = (V, E, 
Ξ, Γ) is a directed graph with  
V ≠ ∅       : a finite set of vertices (nodes), 
E V V⊆ × : a finite set of arcs (edges), 

, VΞ Γ ⊆ : finite sets of distinguished vertices 
ξ∈ Ξ,and γ ∈ Γ, called entry nodes and exit nodes, re-
spectively, wherein v V∀ ∈ there is at least one se-

quence of vertices 0, , kv vξ …  from each ξ Ξ∈  to vk 

= v and one sequence of vertices 0, , ,kv v γ…  from v0 

= v to each γ Γ∈  with ( )1,i iv v E+ ∈ , for 
0, , 1i k= −…  and ,v ξ γ≠ . 

 
Ξ (ESG), Γ (ESG) represent the entry nodes and exit 

nodes of a given ESG, respectively. To mark the entry 
and exit of an ESG, all ξ Ξ∈  are preceded by a 
pseudo vertex [∉V and all γ Γ∈  are followed by an-
other pseudo vertex ]∉V. Without risking a misunder-
standing, we call those pseudo vertices entry and exit. 

The semantics of an ESG is as follows. Any v ∈ V 
represents an event. For two events v, v’ ∈ V, the event 
v’ must be enabled after the execution of v if and only 
if (v, v’) ∈ E.  

The operations on identifiable components of the 
UI are controlled and/or perceived by input/output de-
vices, i.e., elements of windows, buttons, lists, check-
boxes, etc. Thus, an event can be a user input or a sys-
tem response; both of them are elements of V and lead 
interactively to a succession of user inputs and ex-
pected desirable system outputs. 
 
Definition 2. Let V, E be defined as in Definition 1. 
Then any sequence of vertices 0 , , kv v…  is called an 

event sequence (ES) if ( )1,i iv v E+ ∈ , for 
0, , 1i k= −… . 

 
Note that the pseudo vertices [, ] are not included in 

the ESs. An ,i kES v v=  of length 2 is called an event 
pair (EP). Accordingly an event triple (ET), event 
quadruple (EQ), etc. can be defined. 
 

 
Figure 1. An ESG with its pseudo vertices [, ] 
 
Example 1. For the ESG given in Figure 1: 

{ },  ,  V a b c= , { }aΞ = , { }bΓ = , and 

{ }( , ),  ( , ),  ( , ),  ( , )E a c a b b c c b= . Note that arcs from 
pseudo vertex [ and to pseudo vertex ] are not included 
in E. 



 

 

Furthermore, α (initial) and ω (end) are functions 
to determine the initial vertex and end vertex of an ES, 
e.g., for ES= 0 , , kv v… , the initial vertex and end 

vertex are ( ) 0ES vα = , ( ) kES vω = , respectively.  
Finally, the function l (length) of an ES determines 

the number of its vertices. In particular, if ( ) 1l ES =  
then iES v=  is an ES of length 1. 

Note that the pseudo vertices [ and ] are not consid-
ered in generating any ESs. Neither are they 
considered to determine the initial vertex, end vertex, 
or length of the ESs. 
 
Example 2. For the ESG given in Figure 1, bcdc is 
an ES of length 4 with the initial vertex b, end vertex 
c. 
 
Definition 3. An ES  is a complete ES (or a complete 
event sequence, CES), if ( )ESα ξ Ξ= ∈  is an entry 

and ( )ESω γ Γ= ∈  is an exit. 
 
Example 3. abc is a CES of the ESG of Figure 1. 

CESs represent walks from the entry of the ESG to 
its exit realized by the form: (initial) user inputs→ (in-
terim) system responses → … → (final) system re-
sponse. 

Note that a CES may invoke no interim system re-
sponses during user-system interaction, i.e., it may 
consist of consecutive user inputs and a final system 
response. 
 
Definition 4. A regular expression consists of sym-
bols, for example a, b, c, ..., of an alphabet Σ which 
can be connected by operations 

 Sequence (usually no explicit operation symbol, 
e.g. “ab” means “b follows a”),  

 Selection (“+”, e.g. “a+b” means “a or b”), 
 Iteration (“*”, Kleene’s Star Operation, e.g. 

        “a*” means “a will be performed arbitrarily”;  
        “a+” means at least one occurrence of “a”). 
 
Example 4. T = [(ab(c+d)+)*] 
 

Based on algorithms known from automata theory 
and formal languages, ESGs can be transformed to 
regular expressions and v.v. [10], [11]. 
 
Example 5. An ESG that corresponds to the regular 
expression T of the Example 4 is given in Figure 1. 
 
 

2.2. Handling Context Sensitivity 
 

When using ESGs to model an application, e.g., a 
graphical user interface, there is often a need to use the 
same command, or the same icon, for similar op-
erations in different contexts or in different 
hierarchical levels of the application. An example is 
the operation delete used for deleting a symbol, a 
record, a file, etc. In such cases, the system usually 
carries out the proper action using the context informa-
tion. The approach introduced, however, eliminates the 
need for being explicit about the hierarchy information 
in abstracting the real system into an ESG model. 
 

 

 
Figure 2. Interaction ambiguities (caused by the double 
occurrence of a) and their resolution through indexing 
 

As an example, Figure 2 depicts an ESG that has 
two different nodes with the same label a and there-
fore, can be initiated or triggered by the same input a. 
While constructing the EPs and FEPs, and accordingly 
the CESs and FCESs, one needs to differentiate be-
tween the node a that leads to b or c, and the node a 
that can be reached via b and leads only to c. This 
ambiguity can be resolved simply by indexing, for ex-
ample, a1 identifying the first appearance of a, and a2 
identifying the latter one. This indexing implies the 
syntactical, or contextual, position and can help with 
the reconstruction of different hierarchical levels that 
have been “flattened” in the course of modeling. 
 
2.3. Complementing the ESG 
 
Definition 5. For an ( , , , )ESG V E Ξ Γ= , its comple-

tion is defined as n lESG (V ,E, , )Ξ Γ=  with lE V V= × . 
 
Definition 6. The inverse (or complementary) ESG is 
then defined as ESG (V ,E, , )Ξ Γ=  with lE E \ E= . 

Figure 3 (b) illustratesnESG , which can systematically 
be constructed in three steps:  

 Add arcs in the opposite direction wherever only 
one-way arcs exist. 



 

 

 Add self-loops to vertices wherever none exist. 
 Add two-way arcs between vertices wherever no 

arcs connect them. Note that they are drawn bi-
directionally. 

ESG (the inversion of the ESG) consists of arcs 
that will be added to the ESG to construct the nESG  
(completion of the ESG). 
 
(a) Inversion 

(b) Completion  

 

Figure 3. Inversion ESG  and completion nESG  with 
nESG ESG\ ESG=  of Figure 1 

 
Definition 7. Any EP of the ESG  is a faulty event pair 
(FEP) for ESG. 
 
Example 6. ba of the given ESG  in Figure 3 is a 
FEP. 
 
Definition 8. Let 0 , , kES v v= …  be an event se-

quence of length 1k +  of an ESG and ,k mFEP v v=  

a faulty event pair of the corresponding ESG . The con-
catenation of the ES and FEP then forms a faulty event 
sequence 0, , ,k mFES v v v= … . 
 
Example 7. For the ESG given in Figure 3, aba is an 
FES of length 3. 
 
Definition 9. An FES is complete (or a faulty complete 
event sequence, FCES) if ( )F E Sα ξ Ξ= ∈  is an 
entry. The ES as part of a FCES is called a starter. 
 

Note that Definition 9 explicitly points out that a 
FCES does not finish at an exit, unlike a CES that must 
finish at an exit. 

Example 8. For the ESG given in Figure 3, the FEP 
db of the ESG  can be completed to the FCES abdb 
by using the ES ab as a starter. Note that the [ is not 
included in the FCES as it is a pseudo vertex. 
 

The starter ab in Example 8 is arbitrarily chosen, 
and hence the variation in length of an FCES is always 
attributable to starters prior to this special FEP under 
consideration. The result is then FCESs of various 
lengths. Thus, the “length” in the test process primarily 
relates to the CESs. 
 
3. Operations to Generate Mutants – an 
ESG View 
 

Assuming that the given ESG correctly specifies the 
expected, desirable behavior of the SUT, the comple-
mented ESG can be used to generate mutants of the 
system, i.e., to specify erroneous, undesirable situa-
tions. In other words, to describe, how the system is 
not supposed to behave. 

The given ESG can be changed by manipulating 
either the arcs or the events. As the arcs are primarily 
responsible for correctly sequencing the events, we 
start with arcs for manipulation of the ESG before we 
manipulate the number and structure of the events. 
 
3.1. Arc Manipulation 
 

Basically, we can generate arc mutants of an ESG 
in that (between both events of any EP in an ESG) we  

 insert an extra arc in any direction, without caus-
ing a multiple arc in the same direction (arc in-
sertion, aI-operation), or 

 omit an existing arc (arc omission, aO-opera-
tion). 

Note following: 
 Applying the aI-operation to all EPs of an ESG 

produces its inversion ESG and leads to the 

completion nESG  of the ESG given. Based on 
nESG  and using the algorithms given in [8] 
FCESs can systematically be generated to obtain 
mutants. 

 Applying the aO-operation to all EPs of an ESG 
generates ES of various lengths that are mutants 
to simulate incomplete paths, i.e., deadlocks. 

 Corruption (aC-operation) of an existing arc be-
tween an EP, i.e., changing its direction, can be 
represented by omission of this arc, immediately 
followed by insertion of an arc of opposite direc-
tion. 



 

 

aI- and aO-operations can be applied to an ESG re-
peatedly, e.g.., n times. This is represented as aIn and 
aOn. They can also be combined arbitrarily, e.g., three 
arcs inserted or two arcs deleted; represented by aI3 + 
aO2. “+” represents the choice as inclusive or. 
 
3.2. Event Manipulation 
 

Manipulation of events of an ESG is more intricate 
than manipulating its arcs. Event mutants of an ESG 
can be generated in that (between the events of an EP) 
we  

 insert an extra event (event insertion, eI-opera-
tion), or 

 omit an existing event (event omission, eO-
operation). 

Insertion of an event e that is included in the event 
set V leads to an intrinsic mutant, whereas e∉ V leads 
to a non-intrinsic mutant. 

It is evident that 
 eI-operation requires adding extra arcs to/from 

the inserted event from/to all other nodes, and 
 eO-operation requires that all arcs to/from the 

omitted event be deleted in order to avoid arcs 
that originate from or lead to nowhere. 

Note the following: 
 Event insertion extends the ESG whereas event 

omission reduces it. 
 Corruption (C-operation)of an existing event in 

an ESG, i.e., replacing it, can be represented by 
omission of this event, immediately followed by 
insertion of a replacement event. 

eI- and eO-operations can be applied to an ESG re-
peatedly, e.g., n times. This is represented as eIn and 
eOn. They can also be combined arbitrarily, e.g., three 
events inserted or two events deleted; represented by 
eI3 + eO2. 
 
3.3. Event Manipulation vs. Arc Manipulation 
 

An open question now to be discussed is the “muta-
tion power” of the manipulation operations introduced 
in the previous section. This is necessary to avoid 
multiple generations of the same mutants by different 
manipulation operations, a problem which would 
unnecessarily waste the test budget. 
 
Lemma 1. Any set of mutants generated by a set of 
aO-operations can also be generated by a set of eO-
operations. 

This is true because deleting events also deletes per 
definition the arcs. Accordingly, events and arcs to be 

deleted can be selected to form the set of mutants 
required. � 
 
Lemma 2. The set of mutants generated by eI-opera-
tion is disjointed (different) than the set of mutants 
generated by aI-operation. 

Event insertion is performed twofold: 
 Insertion of an event that is not included in the 

event set V (non-intrinsic mutant): The arcs are 
then newly created and thus cannot be included 
in the set of mutants generated by aI-operation. 

 Insertion of an event that is included in the event 
set V (intrinsic mutant): As explained in Section 
2.2, such events are indexed and thus handled as 
extra events, i.e., the same way as they were not 
included in the event set V. 

Either way, eI-operation creates new arcs that can-
not be included in the former ESG. � 
 
4. Extending the ESG View and Algebraic 
Way for a Uniform Representation 
 

The mutation operations introduced in the previous 
section can be applied also to specifications of higher-
level order. This section adapts and exemplifies the in-
troduced basic operations to extend the approach to 
FSA and statecharts.  
 
4.1. Considering States and Outputs – Ex-
tending to FSA 
 

Traditional finite-state automata (FSA as Moore 
automata) consist of states and transitions labeled by 
inputs, and in the case of a Mealy machine, also out-
puts. An ESG is a finite, memoryless device, in the 
sense that it consists of a finite set of nodes and 
vertices, and the transitions are unlabeled. In other 
words, states and inputs/outputs of a FSA are merged 
to derive the corresponding ESG. This merging 
considerably simplifies the fault modeling. 

As an example, Figure 4, (b) represents the ESG of 
Figure. 4 (a) as an FSA, which is then completed by a 
fault state (Figure 4, (c); see also [10], [11], and [12]). 
 

 
(a) A simple ESG 

 

 
(b) FSA which is equivalent to the ESG of (a) 



 

 

 
(c) Completed FSA of (b) 

Figure 4. Completing an FSA 
 

If the underlying ESG has n vertices, the corre-
sponding CESG has at most n2 edges that connect each 
of the n vertices with every other vertex, including the 
self-loops. The ESG in Figure 4 (a) has two events, 
leading to a total of 4 edges (22 = 4) of its CESG, with-
out counting the entry and exit nodes. Assuming that 
the corresponding FSA in Figure 4(b) has three states 
and an input alphabet of two symbols, a and b, the 
corresponding, completed FSA (CFSA) is given in 
Figure 4 (b) with an extra state fault. For the sake of 
simplicity, edges are allowed to be associated with 
multiple inputs, e.g., with both a and b. Evidently, a 
CFSA with n  states and an input alphabet of the 
cardinality m has m n⋅ edges (again, without counting 
the entry and exit edges). Thus, the example CFSA in 
Figure 4 has a total of 6 edges (2·3 = 6); with the edge 
labeled with two inputs counted as a double edge. 

Mutation operations for insertion and omission of 
states, transitions, inputs, outputs (as events) are de-
fined in analogy to the operations introduced in 
Section 3. 

A system model and fault model based on FSA can 
algebraically be represented by means of regular 
expressions, similar to ESG. We omit those 
explanations and refer to [10], [11].  
 
4.2. Considering Concurrency, Communication 
and Hierarchy Aspects – Extension to State-
charts 
 

Statecharts [19] are widely accepted, e.g., adopted 
in UML notation, for system modeling. Based on our 
previous work [9] and in analogy to Section 3, we 
complement the given statechart by inserting an error 
state and faulty transitions (Figure 5). The notations 
error state and faulty transition are used for explicitly 
describing the faulty behavior of the modeled system. 
 

 
Figure 5. Fault model - error state and faulty transition 

Faulty transitions run from each state of diagram to 
an error state caused by the events that trigger no (le-
gal) transition in the context of this state. In Figure 5, 
only the (legal) transition t3 can be triggered when the 
system is in state s1. Therefore, the faulty transition 
from state s1 to the error state is triggered by the faulty 
transitions t1, t2, or t4, if the transition set is given by {t1, 
t2, t3, t4}. The transitions represented by dashed lines are 
faulty ones. To generate the faulty guarded transitions 
the guards have to be negated, if existing.  

Operations for insertion and omission of states, his-
tory states, transitions, etc. can be defined in analogy 
with Section 3.1 and 3.2. Moreover, system models 
and fault models can algebraically be represented by 
means of extended regular expressions. We omit those 
explanations and refer to [9], [13]. 

“Guards” of the transitions are represented in state-
charts by Boolean expressions. They are mutated by 
negation, and thus the transitions are attributed to error 
state(s) accordingly. Therefore, they do not need extra 
handling. 
 
4.3. Algebraic Representation 
 

For generalization of the mutation operations, we 
introduce the notion element which subsumes the no-
tions arcs, events, inputs, outputs, states, history states, 
transitions, etc. Mutants can be generated in that (be-
tween two elements) we  

 insert an extra element (insertion, I-operation), 
or 

 omit an existing element (omission, O-opera-
tion). 

Insertion of an element e that is included in the ele-
ment set V leads to an intrinsic mutant, whereas e∉ V 
leads to a non-intrinsic mutant. 

Based on Definition 2 in Section 2, we generalize 
the notion ES (event sequence) to element sequence 
(ElS) and summarize the operations for mutant genera-
tion as follows: 

Note that a C-operation can be represented by an O-
operation followed immediately by an I-operation, 
with a different element being inserted for the omitted 
element. 



 

 

When applied to the elements of an ESG, FSA, or 
statechart, the mutation operations are capable of de-
livering mutants to simulate a variety of defects, e.g., 
whether a transition is missing as a result of a defect of 
the next state function, or if an output is missing or 
corrupted, since the output function does not work 
properly, etc. In analogy to previous sections, the 
mutation operations can be extended from single 
manipulations to multiple (n) ones:  

 In-operation – n elements inserted. 
 On-operation – n elements omitted. 
 Cn-operation – n elements corrupted. 

Finally, to represent arbitrary types of mutants 
within the context of a finite-state model, an appropri-
ate combination of these operations, e.g., “an element 
is omitted, or inserted, or two elements have been in-
terchanged” can be represented by  

I+O+C2 
where “+” represents the logical operator for inclusive 
or. In this context, an element can be a transition, a 
state, etc. 

The described fault model can generate many 
classification schemes for coverage, as will be shown 
in the next section. 
 
4.4. Comparison with Other Approaches 
 

Based on mutation operations introduced in the pre-
vious sections, many of the existing mutant generation 
techniques can be represented in a uniform way. As an 
example, we refer to [13], [14], [15], which introduced 
37 operators for mutant generation. All of those can be 
represented by I- and O-operations or their multiple 
applications and combinations, as follows. 

 Missing arc, transition, event, state, input, history 
state, etc.: O-operation. 

 Extra arc, transition, event, state, input, history 
state, etc: I-operation. 

 Exchanged arc, transition, event, state, input, his-
tory state, etc: O-operation immediately followed 
by I-operation. 

 
5. Case Study 
 

This case study deploys different strategies to gen-
erate mutants, varying mutation operators, etc. on one 
side, and modeling techniques on the other side. 
 
5.1. System under Test 
 

The control terminal of a marginal strip mower 
(RSM 13, Figure 6), which controls the vehicle in a 
way that takes optimum advantage of mowing around 

guide poles, road signs and trees, is considered. 
Operation is effected either by the power hydraulic of 
a light truck, or by the front power take-off. Further 
buttons on the control desk (Figure 6) simplify the 
operation, so that, e.g., the mow head returns to 
working position or to transport position when a button 
is pressed.  
 

 
 

 
Figure 6. The vehicle (RSM 13) and its control terminal
 

As a first step, i.e., for the highest level, a total of 
five ESGs of SUT are produced. This set of ESGs is 
then incrementally extended and refined with lower 
level details. Each of the desirable events defines a 
system function that must be well understood and pre-
cisely represented in a corresponding ESG at an appro-
priate level of granularity. 

The ESG in Figure 7 represents the top level of the 
GUI (graphic user interface) of the display unit de-
picted in Figure 6 which enables the user to interact 
with the working position (work. pos.) of the mover. 
The head of the mover can be shifted left or right 
depending on the pressure (pres.) being on or off to 
keep the mover head on the bottom. The pressure must 
be activated before the cutter can be started; otherwise 
damage is likely on objects that are close to the 



 

 

vehicle. Upon completely carrying out the cutting 
process the cutter has to be switched off to move the 
mover into the transport position (trans. pos.). 
 

 
Figure 7. An ESG to illustrate the interaction between
the cutting unit and the pressure 
 
5.2. Testing with Mutants Generated by ESGs 
 

As already proved in Lemma 1 in Section 3.3, the 
generated mutants of aO-operations constitute a subset 
of the eO-operations. Therefore, we focus here on the 
generation of mutation by aI-, aO- and eI-operations. 
Based on the ESG given in Figure 7 the mutants can be 
generated as follows. Applying the aI-operation to the 
ESG in Figure 7 produces the inversion of the ESG 
and leads to the completion ESG given in Figure 8. 

An algorithm is given in [8] to generate FCESs (see 
Definition 9, Section 2) the total length of which is 
minimal to cover FESs of a given length. We recall 
that FCESs represent mutants and use this algorithm to 
systematically generate mutants, e.g., the faulty ElS 
(element sequence) “[RSM work.pos. shiftleft 
work.pos.] ”. 

[8] also includes an algorithm to construct CESs 
which represent minimal walks (A walk is a complete 
ElS that starts in [ and terminates in ]). Applying the 
aO-operation to the ESG of Figure 7 generates ElS of 
various lengths, i.e., the assumption holds that after 
deleting an arc the resulting graph further represents an 
ESG. Otherwise, incomplete paths would have been 
generated which would contradict. As an example, re-
moving the arc from RSM13 to work.pos. of Figure 7 
would lead to the ESG with the ElS “[ RSM13 <= ]” 

as a mutant generated by aO-operation. However, “[ 
RSM13 <= ]” is a valid ElS, and thus not a mutant. 

 
Figure 8. Completion ESG of Figure 7 (“[“: entry, “]“: 
exit)” 
 

 
Figure 9. Insertion of extra events for mutation genera-
tion by eI-operation. 
 

For the generation of mutants by eI-operations the 
ESG has to be extended by an extra event. This extra 
event requires additional arcs for mutation generation 
from the extra event to all other events and from all 



 

 

other events to the extra event. This is illustrated in 
Figure 9, e.g., the mutant “[ RSM13 work.pos. 
pres.on work.pos.” is generated by eI-operation. 
 

For a comprehensive testing, several strategies have 
been developed with varying mutant operations, re-
sulting in 826 tests which were semi-automatically car-
ried out by a student tester. The test process revealed a 
total of 21 faults, including some severe ones (Table 
1).  
 
Table 1. Three of the detected faults of the RSM control 
terminal 

No. Faults Detected by the mutants 

1. 

The cutting unit can be activated without having 
any pressure on the bottom, which is very danger-
ous if pedestrians approach the working area (Ac-
cording to the dashed (faulty) arc from “pressure 
OFF” to “cutter ON” in Figure 8). 

2. 

Keeping the button for shifting the mow head 
pushed and changing to another screen causes 
control problems of shifting: The mower head 
with the cutting unit cannot immediately be 
stopped in an emergency case. 

3. Restarting the hydraulic gear while it is already 
running can cause serious damage. 

 
Table 2 summarizes the analysis of the fault detec-

tion. The mutants generated by aI-operation were more 
effective in revealing faults than the mutants by aO- or 
eI-operations. The mutants by eI-operation could not 
detect any fault. This is because the ESG does not in-
clude indexed events. In the case of a non-intrinsic 
mutant the extra event is not included in V and thus 
could not be determined by the tester. The faults de-
tected by the mutants generated by aO-operations are 
those that still remain in a valid ESG after deleting an 
arc. Otherwise, the generated mutants traverse only a 
sub-sequence of a sequence, possibly of a walk which 
can still represent a legal sequence. 
 
Table 2. Detected faults by different mutant operations 

mutant operation aI aO eI 
detected faults 15 6 0 

 
5.3. Testing with Mutants Generated by State-
charts 
 

Figure 10 represents a statechart that visualizes the 
functionality described by the ESG in Figure 7. The er-
ror state is included that enables the application of 
mutation operations introduced in sections 3.1 and 3.2. 

As an example, we omit the arc (transition) T20. This 
corresponds with the omission of the arc from 
press.Off to trans.pos. of the ESG in Figure 7. The 
omission of the transitions from and to an event in the 
statechart has the same effect of the omission of an 
event in an ES. This also holds for the insertion 
operation. 
 

Figure 10. Statechart of the RSM to visualize the inter-
action between the cutting unit and the pressure. 
 
5.4. Mutants Generated by ESGs vs. Mutants 
Generated by Statecharts 
 
For a comparison of the fault detection capability of 
the mutants generated by ESG and statechart, we 
carried out following tests. 

(i) For the case study described above, the same 
group of student testers collectively constructed 
a set of both ESGs and statecharts, generated 
mutants, and performed the tests. 

(ii) While a group of student testers constructed 
ESGs generated mutants and performed the 
tests, a second group did the same using 
statecharts. 

Surprisingly, the comparison of the fault detecting 
capability of ESGs vs. statecharts could not point out 
any significant tendency to favor either the ESG or the 
statechart, but confirmed the effectiveness of mutants’ 
generation by different strategies when properly ap-
plied to different modeling methods. 



 

 

For lack of space, details of the case study cannot 
unfortunately be included in this paper; some results 
are been briefly summarized here. 
 
6. Conclusions, Further Work 
 

Based on a general fault model, the previous 
sections introduced two basic operations, insertion and 
omission, and applied them to elements, i.e., nodes and 
arcs of graph-based models of increasing 
representation power. More precisely, we considered 
ESG, FSA, and statecharts. The mutant generation 
features of the basic operations (when applied to 
different elements of the graphs) are compared. 
Centered on an industrial project, a case study 
compared the fault detection capacity of the mutants 
generated using the different models. The most 
significant results are: 

 The variety of most of the existing mutation op-
erations can be represented by appropriate 
combinations of the basic operations introduced. 

 Mutants based on ESG and mutants based on 
statecharts do not differ much in their fault 
detection capability. 

Our ongoing work studies optimization aspects of 
mutants subject to their costs, given by their length, 
number, etc. and coverage capability of different 
elements of the models. Empirical analysis methods 
are also considered. 
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