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Abstract

Reactive systems used in safety-critical domains demand
high level of confidence. The development of these sys-
tems, which are submitted to several normative recommen-
dations, is complex and expensive. Reactive systems can
be developed by using the data-flow approach: many lan-
guages support this approach such asMATLAB /SIMULINK ,
LUSTRE/SCADE. This paper concentrates on theLUS-
TRE/SCADE language, especially the description of reac-
tive system environment properties in this language. The de-
scription of environment properties, which is important for
the validation (the proof and the test) of reactive systems,
is not easy. Hence, we would like to use the mutation tech-
nique to consolidate this difficult task: we use theLESAR

model-checking tool to detect equivalent mutants and some
test case generators such asGATEL or LUTESStools to kill
non-equivalent mutants.

1. Introduction

Nowadays, reactive real-time systems are widely used in
many safety-critical domains: automotive, aerospace, nu-
clear. . . These systems maintain a permanent interaction
with a physical environment. They require a very high level
of confidence, since a failure in any one of them could be a
disaster.

As safety-critical systems, they are constructed using
several normative recommendations such as DO-178B for
avionics software [6]. According to [23], the software de-
velopment process (Figure 1) is composed of:

• The high-level software requirements (HLR) produced
directly from the system requirements and system ar-
chitecture. They include specifications of functional
and operational requirements, timing and memory
constraints. They are written in natural language.

• The low-level software requirements (LLR) produced
through the software design process.

In the development of these deterministic reactive real-
time systems, the designer can use the data-flow approach to
design systems. In this approach, a system can be viewed as
a diagram of operators or subsystems. A subsystem is also a
composition of operators. Many development environments
support this approach such as SIMULINK [14], SCADE [24].

The SIMULINK language, which consists of mathemat-
ical formalisms (differential equations, finite difference
equations, boolean equations, etc), can be used to program
the high-level requirements of reactive software.

The language commonly used to program the low-level
requirements for flight control systems and other avion-
ics systems is the functional synchronous language LUS-
TRE [9], implemented in the SCADE environment.

In the development of these systems, the validation plays

Figure 1. Software development processes
with SCADE Suite



an important role since it ensures the confidence in these
systems. The validation is divided into two activities: the
proof of a part of the system, and the testing phase that
reveals faults in the system. According to [10, 24], these
activities are complementary methods.

The proof of a part of the software can be made with
the SCADE design verifier [24]. GATEL [13] and LUT-
ESS [7, 8] are tools for the interactive generation of test
sequences from LUSTRE descriptions. Both tools use for-
mal specifications of the software environment to generate
test sequences. These specifications only use input vari-
ables of the software. Opposed to environment properties,
safety constraints use the output variables of the software.
Safety contraints are only used in the verification activity of
the software. Both environment properties and safety con-
straints can be expressed in a temporal logic. Environment
properties might be written as soon as the high level require-
ments (HLR) are developed. Early in the development cycle
of the software, they can be used to prepare functional test
sequences.

The formal specifications are expressed in a temporal
logic formula. The environment properties must be true for
any input sequence of the software. In our context, we use
the LUSTRE langage in order to express these environment
properties.

Although mutation technique is based on the competent
analyst hypothesis [2], our experience tends to show that
it is difficult to conceive correct and complete environment
properties, especially for junior engineers. So, we think that
a mutation technique could help designers to validate their
temporal specifications.

In this paper, we present the LUSTRE language, the
SCADE environment and the LUTESS tool (Sect. 2). We
then explain our usage of mutation technique (Sect. 3). In
section 4, we present our mutation technique process of
LUSTRE descriptions. We illustrate these ideas with the
air-conditioner example [3] and we present some results in
Sect. 5.

2. LUSTRE language, SCADE environment,
L UTESS and LESAR tools

2.1. LUSTRE language

LUSTRE[9] is a synchronous data flow specification lan-
guage. It is a declarative language. The synchronous hy-
pothesis considers the program reaction time to be negligi-
ble with respect to the reaction time of its environment.

The synchronous data flow approach consists in present-
ing a temporal dimension into the data flow model. A flow
or stream (basic entity) includes two parts: a sequence of
values of a given type, and a clock representing a sequence
of instants (on the discrete temporal scale).

A L USTREdescription, structured in a network of nodes,
represents the relations between the inputs and the outputs
of a system. These relations are expressed by means of op-
erators (nodes or basic operators), of intermediate variables
and of constants. Inputs, outputs, variables and constants
are represented by sequences of data (i.e. data flows) of the
form (e0, e1, e2, ...).

A node is defined by a set of equations and assertions.
Each node describes the relations between its input param-
eters, output parameters, global variables, local variables
and constants. Any local variable must be defined by one
and only one equation. EquationX = E defines the vari-
ableX as being identical to the expressionE and having
the same sequence of values and the same clock: it means
that, at every momentt related to their clock,xt = et. It is
the principle of substitution:X can be replaced byE any-
where in the program, and reciprocally. The equations can
be written in any order without changing the significance of
the program. An assertionassert BOOL EXPRmeans
that the boolean expressionBOOLEXPRis assumed to be
always true during the execution of the program. Assertions
are used to describe the environment properties of systems.

Expressions are made of variable identifiers, constants
and operators. There are three categories of operators:

• primitive operators, such as: relational operators (=,
<>, <, <=, >, >=), logical operators (and , or , not ,
xor , #), arithmetic operators (+, - , * , / , div , mod,
** , int , real ), conditional operators (if , then ,
else , case ), temporal operators (pre , fby , -> ,
when, current ), assertion operator (assert ).

• more complex operators, callednodes, created by the
users;

• operators imported from another language (C,. . . ).

The significance of two important temporal operators
pre (previous) and-> (followed-by) is detailed below.

• if E is an expression denoting the sequence (e0, e1,
e2,. . . ), thenpre(E) denotes the sequence (nil, e0,
e1,. . . ) wherenil is an undefined value;

• if E andF are two expressions of the same type re-
spectively denoting the sequences (e0, e1, e2,. . . ), and
(f0, f1, f2,. . . ), thenE− > F is an expression denot-
ing the sequence (e0, f1, f2,. . . ).

2.2. LUSTRE example

In this paper, we use a LUSTREexample presented in [3]:
this example allows the monitoring of an air-conditioner
which diffuses hot or cold air. The system is monitored us-
ing a power switch and an adjustable thermostat. According



to the ambient temperature given by a temperature sensor,
the system must diffuse hot or cold air until theTempOK
thermostat state is reached.

The system is represented by a machine with four states:

• STOPcorresponds to the state ”out of order” of the
air-conditioner;

• HOTmeans that the air-conditioner is running and dif-
fusing hot air;

• COLDmeans that the air-conditioner is running and
diffusing cold air;

• IDLE means that the air-conditioner is running but
does not diffuse air (this situation occurs when the am-
bient temperature is identical to that indicated by the
thermostat).

The changes of states are operated under certain condi-
tions:

• Go is true when the power switch is on, otherwise it is
false;

• TooCold , TempOKandTooHot are true when the
ambient temperature is respectively lower, equal or
higher than the temperature indicated by the thermo-
stat of the air-conditioner. These three conditions con-
stitute a simplified view of information coming from
the temperature sensor and the thermostat.

There are two assumptions on the temperature variation:

1. one and only one of the conditionsTooCold ,
TempOKandTooHot can be true at the same time;

2. between the passing to true of theTooCold condition
and that of theTooHot condition, theTempOKcon-
dition will be true at least once (and conversely).

The block diagram of this example (Figure 2) has been
created with the SCADE editor.

The LUSTRE code of this example is presented in Fig-
ure 3.

2.3. SCADE environment

The SCADE [24] environment was developed by the
Telelogic company (now Esterel Technologies). This envi-
ronment, derived from the LUSTRE language, supports the
synchronous data flow approach for the development of re-
active systems. This environment supplies a set of tools:
graphical editor, simulator, model checker and code genera-
tors that automatically translate graphical specifications into
C or Ada code. Some C code generators are certified DO-
178B. Specific symbol libraries such as “libdigital”, “lib-
math” and “libverification” are also included in the SCADE

Figure 2. Air-conditioner block diagram

1 node Clim2 (Go, TooCold, TempOK, TooHot : bool)
2 returns (STOP, IDLE, HOT, COLD : bool);
3
4 let
5 STOP = not Go;
6 IDLE = Go and TempOK;
7 -- HOT = Go and TooCold;
8 HOT =
9 (Go and TooCold) ->

10 (pre (STOP or IDLE or HOT) and
11 Go and TooCold);
12 -- COLD = Go and TooHot;
13 COLD =
14 (Go and TooHot) ->
15 (pre (STOP or IDLE or COLD) and
16 Go and TooHot);
17 tel;

Figure 3. Air-conditioner LUSTREcode

environment. Users can create their own libraries by using
the graphical editor or by manually coding complex opera-
tors.

From the “libverification” library, standard opera-
tors such asImplies , AlwaysAfterFirstCond ,
HasNeverBeenTrue , After1stTick , AtLeast-
NTicks , ImpliesWithin1Tick , etc. are available for
the system specifications.

We added the nodesafter , always from to ,
always since , atlast , edge , jafter , once ,
once from to , once since , two states , xedge to
a library in order to extend the SCADE environment. See
[19,21] for informal specifications of these operators.

2.4. LUTESS: Architectural overview

LUTESS is a testing environment for synchronous reac-
tive software. It produces automatically and dynamically
test data with respect to some environment constraints of
the program under test.



The architectural overview of LUTESS is presented in
Figure 4.

Figure 4. LUTESSarchitectural overview

The operation of LUTESSrequires three elements: a ran-
dom generator, a unit under test (UUT) and an oracle (as
shown in Figure 4). LUTESS constructs automatically the
test harness which links these three components, coordi-
nates their execution and records the sequences of input-
output relations and the associated oracle verdicts. These
three components are just connected together and not linked
into a single executable code. More details can be found
in [7,19].

The constrained random generator is automatically built
by LUTESSfrom specifications written in LUSTREand from
operational profiles [15] stated partially in LUSTRE.

2.5. LESAR tool

LESAR [18, 21] is a model-checking tool for the Lus-
tre language. It takes a compound verification program in
Lustre (as depicted in Figure 5). It applies standard sym-
bolic model-checking techniques, with abstraction of nu-
merical variables, to perform the verification. If theok out-
put is false while therealistic output is always true,
LESAR [18, 21] will find a counter-example (a sequence of
states which leads to a bug).

3. Mutation Analysis

Mutation technique [1, 11, 16] induces the injection of
faults into the software by creating many versions of the
software, each containing one fault. Test cases are used
to execute these faulty descriptions with the goal of distin-
guishing the faulty descriptions from the original descrip-
tion [17]. Faulty descriptions aremutants of the original,
and a mutant iskilled when the output of the mutant is dis-
tinguished from that of the orginal description.

Some mutants may be functionallyequivalent to the
original description. Equivalent mutants always produce the

Figure 5. LESAR compound verification pro-
gram

same output as the original description.
In the classic mutation, all the test cases submited to the

original program produce correct results. If for a test case,
the mutant produces a result different from the awaited re-
sult, then this mutant is marked asdead. The mutation score
is the ratio between the number of dead mutants and the
number of non-equivalent mutants.

Specification mutation operators for SMV [5] have been
studied in [4]. A mutation operator has a corresponding
fault class. Fault classes have been studied by Kuhn [12].
Many mutation operators can be transposed to the environ-
ment properties written in LUSTRE. Some new operators
have been added in order to treat verification primitives such
as once from to , always from to , once since ,
etc.

4. Mutation analysis process

At the LCIS laboratory, we have developed a multi-
language mutant generator for the VHDL , C languages
[1,16,22] using the principles of [11]. Later, we extended it
for the LUSTRE language. For each mutation analysis, we
used a mutation operator table as an entry to our mutation
generator and we have defined several operator tables for
different mutations analysis. For the LUSTRE language, we
need new mutation operators adapted to the temporal logic.

In restricting mutation technique on to environment
properties, we can limit the number of generated mutants
and large amounts of computations aren’t necessary. Using
a selective mutation — a “do fewer” approach — with the
logical operator replacement (LOR), relational operator re-
placement (ROR) and the unary operator insertion (UOI, in
fact thenot or pre operator) and special temporal logic



Figure 6. Schematic data flow diagram of the
tool

operators, we limit the computional expense of generating
and running vast numbers of mutants. We can also use a
randomized selection of mutants [25].

The functions of the SCADE editor can be extended by
using APIs in the TCL language. So, we can extract the
environment properties from the SCADE model of the soft-
ware and construct four elements:

1. a environment description node to calculate the en-
vironment properties replacing the original assertion
such as thePropEnvClim node (Figure??) used in
our case study,

2. anoracle node to compare the mutant result and the
original result obtained by a call to the previous node
such as theOracle PropEnvClim node for the
LUTESSoracle (Figure??); note that we choose to use
the original description of environment properties in
the oracle,

3. aunit under test for the LUTESStool which is a gener-
ated mutant. These mutants are generated by using our
sample mutant generator as soon as mutant operators
have been defined,

4. a constraints description node to generate test se-
quences such as thePropEnvClim node (Figure??).

With these last three elements, the LUTESS tool gener-
ates input test sequences.

It will be noted that we may potentially use our method
on any LUSTREnode viewed as atoplevel node, for exam-
ple, in a system testing activity.

Note that we use the SCADE SUITE (version 5.0.1) under
Windows XP and the other tools run under UNIX /L INUX

systems.

5. Case Study

We applied this method to the air-conditioner problem
described in [3]. In the description of the LUSTRE/LUTESS

code, we omit the description of a standard verification li-
brary used for the LUSTRE language.

The original description of the environment properties,
is presented as:

1 node PropEnvClim (
2 Go, -- position of the switch
3 TooCold, -- ambient temp. < thermostat
4 TempOK, -- ambient temp. = thermostat
5 TooHot : bool -- ambient temp. > thermostat
6 )
7 returns (
8 ok : bool -- ‘‘true’’ if the environment
9 -- properties are respected

10 );
11
12 var
13 assert_1 : bool;
14 assert_2 : bool;
15
16 let
17 ok = assert_1 and assert_2;
18
19 assert_1 =
20 ((TooHot or TempOK or TooCold) and
21 # (TooHot, TempOK, TooCold));
22
23 assert_2 =
24 (once_from_to (TempOK, TooCold, TooHot) and
25 once_from_to (TempOK, TooHot, TooCold));
26 tel;

In this specification, according to the synchronism hy-
pothesis of the LUSTREdescriptions, we translated the two
assumptions on the temperature variation (see 2.2) into the
asset 1 andasset 2 equations.

The LUTESSoracle, using theoriginal description of the
environment properties, is:

1 node Oracle_PropEnvClim (
2 -- ‘‘mutant result’’
3 ok : bool; -- ‘‘true’’ if the environment
4 -- properties are respected
5 -- in the mutant.
6 -- Input variables
7 Go, -- position of the switch
8 TooCold, -- ambient temp. < thermostat
9 TempOK, -- ambient temp. = thermostat

10 TooHot : bool -- ambient temp. > thermostat
11 )
12 returns (
13 verdict : bool -- ‘‘true’’ if the environment
14 -- properties are respected
15 );
16
17 var
18 pp_ok : bool;
19
20 let
21 verdict = (ok = pp_ok);
22
23 pp_ok = PropEnvClim (



24 Go, TooCold, TempOK, TooHot
25 );
26 tel;

In our extended SCADE environment,once from to
is a standard verification predicate:once from to (A,
B, C) is false ifA has been false once time between theB
last occurrence and the first occurrence ofC following the
B occurrence.

The LUTESStest node of this example is:

1 testnode test_PropEnvClim (
2 ok : bool -- ‘‘true’’ if the environment
3 -- properties are respected
4 )
5 returns (
6 Go, -- position of the switch
7 TempLow, -- ambient temp. < thermostat
8 TempOK, -- ambient temp. = thermostat
9 TooHot : bool -- ambient temp. > thermostat

10 );
11
12 let
13 -- The thermostat is in at least one state.
14 environment ((TempLow or TempOK or TooHot));
15 tel;

It expresses that, if the thermostat is functionally correct,
at least one of the three temperature levels is true. Note that
the value of the input variableGo is independent from the
thermostat state.

This LUTESS test PropEnvClim test node can also
be viewed as aspecial observer node [10]. You may add
some conditional probalities in the test node description.

With the lesar PropEnvClim :

1 node lesar_PropEnvClim (
2 Go, -- position of the switch
3 TooCold, -- ambient temp. < thermostat
4 TempOK, -- ambient temp. = thermostat
5 TooHot : bool -- ambient temp. > thermostat
6 )
7 returns (
8 verdict : bool -- truth if the environment
9 -- properties are identical.

10 );
11
12 var
13 pp_ok : bool;
14 ok : bool; -- true if the environment property
15 -- is respected by the mutant.
16
17 let
18 -- compare the two results.
19 verdict = (ok = pp_ok);
20
21 pp_ok = PropEnvClim (
22 Go, TooCold, TempOK, TooHot
23 );
24
25 ok = __NOM_MUTANT__ (
26 Go, TooCold, TempOK, TooHot
27 );
28 tel;

we can determine, using the LESAR tool [20], if the mutant
and the original properties are equivalent: they are equiva-
lent if theverdict variable is alwaystrue .

Some other strategies can be used to describe the envi-
ronment clause of the test node including the original envi-
ronment property or a simplified one, etc.

Experiences have been made using the following muta-
tion operators:

LOR = (and, or, xor)
VR = (once_from_to,

always_from_to,
not_between_and

)
VR = (TooHot, TempOK, TooCold)

Here is a mutant obtained by replacing theTempOKvari-
able with theTooCold variable in theassert 2 equa-
tion:

1 node PropEnvClim (
2 Go , -- position de l’interrupteur
3 TooCold , -- ambient temp. < thermostat
4 TempOK , -- ambient temp. = thermostat
5 TooHot : bool -- ambient temp. > thermostat
6 )
7 returns (
8 ok : bool -- ‘‘true’’ if the environment
9 -- properties are respected

10 ) ;
11 var
12 assert_1 : bool ;
13 assert_2 : bool ;
14 let
15 ok = assert_1 and assert_2 ;
16 assert_1 = ( ( TooHot or TempOK or TooCold ) and
17 # ( TooHot , TempOK , TooCold ) ) ;
18 assert_2 = ( once_from_to ( TempOK , TooCold , TooHot )
19 and once_from_to ( TooHot , TooHot , TooCold ) ) ;
20 tel

With these operators, we generated 35 mutants. There
are 2 equivalent mutants due to the replacement of theor
operator by thexor operator. All non-equivalent mutants
were killed: the mutation score obtained is equal to1 be-
cause our case study is quite simple.

6. Conclusion and Future Work

This is a short presentation of our work on a very simple
example. It must be validated on larger formal specifica-
tions from real industrial case studies. Nevertheless, we can
present some limits of our approach and the needed future
work.

Our mutation technique process can be used on assertion
clauses in a node if the assertions only use input variables
of this node: the assertions can be viewed as simple envi-
ronment properties.

By using a mutation operator table, we have an implicit
fault model. By extending the semantics of the mutation
operator language, we may use a more precise specification
fault model for the SCADE/LUSTRElanguage or the specific
application domain.

We may need to replace the LUTESStest sequence gen-
erator with the GATEL one in order to manipulate integer
data types and, in the future, precise real data types.



In the future, a new and specific mutant generator must
be written in order to extend the functionalities needed to
make a full mutation analysis for the LUSTRE language.
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