
Fault-Based Interface Testing
Between Real-Time Operating System and Application

Ahyoung Sung, Jina Jang and Byoungju Choi
Dept. of Computer Science and Engg., Ewha University, Seoul, 120-750, Korea

{aysung, jajang}@ewhain.net, bjchoi@ewha.ac.kr

Abstract

Testing interfaces of an embedded system is

important since the heterogeneous layers such as
hardware, OS and application are tightly coupled. We
propose the mutation operators in three respects,
‘When?’, ‘Where?’ and ‘How?’ in order to inject a
fault into RTOS program when testing interface
between RTOS and application. Injecting a fault
without affecting the RTOS in run-time environment is
the core of proposed mutation operators. We apply the
mutation operators to interface testing during the
integration of RTOS and application in the industrial
programmable logic controller.

1. Introduction

RTOS (Real Time Operating System) manages an
embedded system by executing applications. To test
embedded software such as RTOS and application is
necessary before the permanent mount of embedded
software [1].

RTOS consists of kernel and system tasks. The
system tasks are executable control units on kernel that
are responsible for running the RTOS. They are tightly
coupled with kernel, hardware devices and
applications. RTOS manages an application as a
system task. Therefore, it is imperative to test interface
between RTOS and application. RTOS and application
communicate via RS-232C protocol defined as a
standard by EIA (Electronic Industries Alliance) [2]. It
is also known as UART (Universal Asynchronous
Receiver/Transmitter).

In this paper, we test interfaces between RTOS and
application by using system tasks on kernel. Here, an
interface refers to a gateway that controls the
communication between two different layers in an
embedded system [3]. This interface is the focal point
for monitoring and debugging an embedded system

where the heterogeneous layers are tightly coupled.
Also, this interface becomes the criteria for test
coverage that is used to select test cases [3]. We define
it as interface testing.

Generally, mutation analysis is a fault-based testing
technique that helps the tester create a set of test cases
to detect specific, predetermined type of faults [4].
When we test software by focusing on a small
restricted class of faults, we can expect to detect more
complicated faults as well, giving us confidence that
fault-based testing strategies can provide effective
ways to test software [5]. Experimental data shows that
faulty versions of a program, called mutants generated
by applying mutation operators are similar to real
faults [20].

Mutation operators generate mutant programs by
injecting a fault into the FIT (Fault Injection Target) of
a source program. In other words, the mutant programs
are generated by changing the FIT syntactically. Other
studies have already developed mutation operators for
procedural programs, object-oriented programs and
component-based programs by deciding the FIT
carefully [6, 7, 8, 9].

It is important to determine when to inject a fault
since RTOS is time-dependent [1]. It is also important
to determine the FIT of RTOS because locations for
injecting a fault are limited. If you modify the
locations for controlling the entire embedded system
such as kernel, it would cause the system to stop.
Therefore, the fault injection time and the fault
injection target for RTOS should be carefully
considered when developing the mutation operators. In
this paper, we propose the mutation operators in three
respects, ‘When?’, ‘Where?’ and ‘How?’ in order to
inject a fault into RTOS program when testing
interface between RTOS and application.

This paper consists of the following sections:
Section 2 describes the interfaces between RTOS and
application. Section 3 accounts for the mutation
operators. Section 4 describes the empirical study.

Finally, section 5 discusses the conclusion and future
work.

2. Interface between RTOS and application

As shown in Figure 1, an embedded system consists

of hardware layer, OS layer and application layer [10].
In case of RTOS, OS layer is subdivided into system
task layer and kernel layer. Interface between RTOS
and application is defined according to the RS-232C
protocol.

OS Layer

Hardware Layer

System Tasks Layer

Kernel Layer

Application Layer

RS-232C

application tasksystem task1

RTOS
OS API OS API OS API

system task2 system taskn-1

system taskn

OS Layer

Hardware Layer

System Tasks Layer

Kernel Layer

Application Layer

RS-232C

application tasksystem task1

RTOS
OS API OS API OS API

system task2 system taskn-1

system taskn

Figure 1. Architecture of an Embedded System

Application communicates with RTOS by sending

headers and data, based on the defined RS-232C
communication protocol. Figure 2 represents the
process of RS-232C communication between RTOS
and application in a sequential manner. The
parentheses in Figure 2 represent the RS-232C
protocol in each communication step as following:

Step1 RTOS enables a queue by calling OS API
(Application Program Interface) ‘OSQPend()’.
The queue is used to receive-communication.
Then, the RTOS transmits ACK or NAK using
semaphore by calling OS API ‘OSSemPend()’.

Step2 After the application sends the starting header,
RTOS transmits ACK or NAK.

Step3 After the application sends the headers, RTOS
transmits ACK or NAK.

Step4 If RTOS receives data or text from application,
checksum is calculated using the received
header information. Then, RTOS transmits
ACK or NAK.

Step5 When the application has no more data to send,
it sends EOT (End of Text).

As shown in Figure 2, RTOS complies with the
standard RS-232C protocol. RTOS has interfaces with
rx_symbol_name during the receiving phase while
RTOS has interfaces with tx_symbol_name during the
transmitting phase. Here, rx_symbol_name and
tx_symbol_name including the prefix ‘rx’ and ‘tx’ are
global variables in the RTOS source code.

ApplicationApplication RTOSRTOS

NAK / ACK

NAK / ACK

NAK / ACK

NAK / ACK

ENQ

SOH

EOT

WHD0

WHD1

STX

ETB / ETX

WBC0 / WEC0

WBC1 / WEC1

WBEND / WTEND

WTXT

NAK / ACK

Enables Queue. (Step1)

Sends ACK or NAK. (Step 1)
Starts sending headers. (Step 2)

Sends a header[0]. (Step 3)

Sends a text[] and
Calculate checksums.
(Step 4)

Sends ACK or NAK. (Step 4)

End of Text. (Step 5)

Sends ACK or NAK. (Step 2)

Sends ACK or NAK. (Step 3)

Sends a header[1]. (Step 3)

Sends ACK or NAK. (Step 3)

ApplicationApplication RTOSRTOS

NAK / ACK

NAK / ACK

NAK / ACK

NAK / ACK

ENQ

SOH

EOT

WHD0

WHD1

STX

ETB / ETX

WBC0 / WEC0

WBC1 / WEC1

WBEND / WTEND

WTXT

NAK / ACK

Enables Queue. (Step1)

Sends ACK or NAK. (Step 1)
Starts sending headers. (Step 2)

Sends a header[0]. (Step 3)

Sends a text[] and
Calculate checksums.
(Step 4)

Sends ACK or NAK. (Step 4)

End of Text. (Step 5)

Sends ACK or NAK. (Step 2)

Sends ACK or NAK. (Step 3)

Sends a header[1]. (Step 3)

Sends ACK or NAK. (Step 3)

Figure 2. RS-232C Communication Protocol

The application received from RS-232C

communication runs with other system tasks in a form
of ‘application task’ which is managed by ‘Task
Management’ API [11, 12] provided by the kernel.
Hence, ‘application task’ has ‘Download’, ‘Run’,
‘Stop’ and ‘Delete’ states.

Table 1 shows both RTOS execution path based on
RS-232C and interfaces to be monitored for each state
of ‘application task’. As shown in Table 1, the
execution path consists of the executed RS-232C
protocol and the corresponding OS API.

Table 1. Interface between RTOS and application

State of
app. task Execution path on RTOS Interface

Download
ENQ-SOH-WHD0-WHD1-
STX-WTXT-ETB-WBC0-
WBC1-WBEND-
data_load()-EOT

rx_symbol_name
tx_symbol_name

Run
ENQ-SOH-WHD0-WHD1-
STX-WTXT-ETX-WEC0-
WEC1-WTEND-
task_fork()-EOT

rx_symbol_name
tx_symbol_name

State of
app. task Execution path on RTOS Interface

Stop
ENQ-SOH-WHD0-WHD1-
STX-WTXT-ETX-WEC0-
WEC1-WTEND-task_kill()-
EOT

rx_symbol_name
tx_symbol_name

Delete
ENQ-SOH-WHD0-WHD1-
STX-WTXT-ETX-WEC0-
WEC1-WTEND-
task_delete()-EOT

rx_symbol_name
tx_symbol_name

3. Mutation operators

3.1. Problems in injecting a fault into RTOS

Mutation operators generate mutation programs by

changing FIT syntactically. Determining the
appropriate time and the location for fault injection is
critical for two reasons: RTOS is time-dependent
software, and FIT of RTOS is limited.

Figure 3 represents the failed situation for
communication between RTOS and application in the
emulator based run-time environment. Negligence of
time and target for fault injection causes ‘checksum
error’ as shown in Figure 3. Here, checksum refers to
calculated value for communication between RTOS
and application in run-time environment where target
board is mounted. ‘Checksum error’ means abnormal
termination of the running RTOS and application on
the target board when the calculation result is different.

Target
Board

in Run-Time

Emulator

Host Computer

RS-232CApplicationApplication

J-Tag

Checksum Error

OK.

RTOSRTOS

Target
Board

in Run-Time

Emulator

Host Computer

RS-232CApplicationApplication

J-Tag

Checksum Error

OK.

RTOSRTOS

Figure 3. Checksum error of RTOS

3.2. Mutation operators

In order to prevent unexpected errors such as

checksum error, we cannot apply the existing methods
for generating mutant programs by syntactic change of
the FIT. We should inject a fault without affecting the

RTOS in run-time environment. We call it ‘mutant
generation by changing FIT semantically’. In this
paper, we propose the mutation operators in three
respects, ‘When to inject a fault into RTOS?’, ‘Where
to inject a fault into RTOS?’ and ‘How to inject a fault
into RTOS?’.

� When: It is not possible to inject a fault and to

monitor the behavior at any time since RTOS is
time-dependent software. The analysis of ‘When?’
is required in order to determine the time for fault
injection.

� Where: RTOS source code that developers can

modify is limited. If you change the locations to
control the entire embedded system such as kernel, it
makes the entire system stop. Therefore, it is
imperative to identify where in RTOS source code
can be modified.

� How: A method to generate faulty versions of

program is necessary, especially when regarding
how to change the program code.

3.2.1. When: Fault injection time. Injecting a fault
into RTOS during the RS-232C communication causes
‘checksum error’ in most of times. It is important to
identify possible time for injecting a fault into RTOS
during the RS-232C communication.

ApplicationApplication RTOSRTOS

EOT

ENQ

WBC1 / WEC1

NAK / ACK

…

WBEND / WTEND

Can’t inject
a fault into

RTOS.

Time

Can’t inject
a fault into

RTOS.

Time for
Fault

Injection

ApplicationApplication RTOSRTOS

EOT

ENQ

WBC1 / WEC1

NAK / ACK

…

WBEND / WTEND

Can’t inject
a fault into

RTOS.

Time

Can’t inject
a fault into

RTOS.

Time for
Fault

Injection

Figure 4. Fault injection time

Figure 4 is a partial capture of RS-232C

communication protocol that is fully described in
Figure 2. As shown in Figure 4, fault injection to
RTOS is possible only ‘while WBEND or WTEND is
in execution’ or ‘prior to the transmission of ACK or
NAK of corresponding protocol’. This moment is also
when checksum calculation for the communication
between two layers is complete and about to transmit
‘EOT’ after completing the RS-232C communication.

If fault injection occurs at other times, RTOS generates
‘checksum error’ and comes to a halt.

3.2.2. Where: Fault injection target. Fault Injection
Target (FIT) should be the interface of RTOS that is
affected by RS-232C communication protocol. The
interface gets formed through rx_symol_name in the
event of receive-communication while it gets formed
through tx_symbol_name in the event of transmit-
communication.

Table 2 describes the rx_symbol_name and
tx_symbol_name that correspond to RS-232C
communication protocol in more details. Steps in
Table 2 are the process of RS-232C communication
mentioned in Section 2. Here, Step4 is subdivided
into Step4a: ‘STX ~ WBC1 or STX ~ WBC0’ and
Step4b: ‘WBEND ~ NAK or ACK’ or ‘WTEND ~
NAK or ACK’.

Table 2. Fault injection target
RS-232C Protocol

Interface Step
1

Step
2

Step
3

Step
4a

Step
4b

Step
5

rx_mode { { { { ~ {

rx_header[] - - { { ~ {

rx_bcs - { { { { {

rx_checksum - { { { { {

rx_text[] - - - { { {

rx_text_ptr - - - { { {

tx_return { { { { { {

-: Not Available ~: Fault Injection Target
{: Corresponding Interface to the RS-232C Protocol

As shown in Table 2, rx_mode and rx_header[] are

the FITs among the identified interfaces because they
are the modifiable locations in RTOS program during
the time of fault injection. rx_mode saves next protocol
to be sent and rx_header[] saves the received header
information. These two are modifiable whereas rx_bcs,
rx_checksum, tx_return, rx_text[] and rx_text_ptr are
not during the time of fault injection.

In other words, if you inject a fault into
rx_symbol_name or tx_symbol_name other than
rx_mode and rx_header[], RTOS generates ‘checksum
error’. It is because rx_bcs, rx_checksum and tx_return
are used in the calculation of the checksum for the RS-
232C communication between two layers and rx_text[]
and rx_text_ptr are application data themselves.

3.2.3. How: Fault injection method. Faulty versions
of the program, called mutant programs, are generated
by semantic change of the FIT of RTOS program at a
proper time.

Figure 5 shows how to generate a faulty program
with two mutation operators, CRM and CRH. CRM
and CRH operators change the value of rx_mode and
rx_header[] respectively upon the completion of
checksum calculation for the RS-232C communication,
and prior to the transmission of ‘EOT’.

Generate_Mutant_Programs (Time, Interface)
{
 Time = Execution Time according to the RS-232C

communication;
 FIT = Interface;

while (Time for sending ‘WBEND or WTEND’

< Time < Time for sending ‘ACK or NAK’ of
‘WBEND or WTEND’)

{
switch(FIT)
{
 /* CRM: Change the value of Rx_Mode */

case ‘rx_mode’:
change the value of rx_mode;
break;

/* CRH: Change the value of Rx_Header[] */

 case ‘rx_header[]’:
 change the value of header;
 break;

} /* End of switch */
 } /* End of while */
} /* End of Generate_Mutant Programs() */

Figure 5. Mutation operators

CRM generates a faulty program by changing the
value of rx_mode. The execution path in RTOS
program is changed according to the value of rx_mode
since rx_mode determines the execution path of RS-
232C communication.

Original
RTOS Program

Mutant Program
by CRM

…
case WBEND:

if (rx_bcs == rx_checksum)
{

rx_mode = EOT;

…
case WBEND:

if (rx_bcs == rx_checksum)
{

rx_mode = ENQ;

…

…

…

…

Original
RTOS Program

Mutant Program
by CRM

…
case WBEND:

if (rx_bcs == rx_checksum)
{

rx_mode = EOT;

…
case WBEND:

if (rx_bcs == rx_checksum)
{

rx_mode = ENQ;

…

…

…

…

Figure 6. An example of CRM

Taking an example of CRM, Figure 6 is a part of
the RTOS source code that implements RS-232C
communication. The faulty program Figure 6 is
generated by changing from ‘EOT’ to ‘ENQ’ while
‘WBEND’ in execution.

CRH generates a faulty program by changing the
ASCII header value in rx_header[]. Received
rx_header[] determines RTOS service and hence, the
change in the value of rx_header[] changes the OS
API to call.

…
switch(rx_header[1])

…

case ‘S’:
task_kill();
break;

…

‘S’

…
switch(rx_header[1])

…

case ‘D’:
task_delete();
break;

…

‘D’

Original
RTOS Program

Mutant Program
by CRH

…
switch(rx_header[1])

…

case ‘S’:
task_kill();
break;

…

‘S’

…
switch(rx_header[1])

…

case ‘D’:
task_delete();
break;

…

‘D’

Original
RTOS Program

Mutant Program
by CRH

Figure 7. An example of CRH

Taking an example of CRH, Figure 7 is a part of the

RTOS source code that implements RS-232C
communication. Since the value of rx_header[1] has
changed from ‘S’ to ‘D’, task_delete() is called at the
times when task_kill() is supposed to be called.

4. An empirical study

We have applied the proposed mutation operators to
the RTOS in the industrial PLC (Programmable Logic
Controller) [13] based on the TI TMS320C32-60 DSP
(Digital Signal Processor) board [14]. PLC is the
embedded system that is broadly used in the industry
such as nuclear power plant, railroad control system
and production line where the systems require real-
time processing. PLC application is written in
programming language such as FBD (Function Block
Diagram) defined in the IEC (International Electro
technical Commission) standard 61131-3 [15].

The RTOS consists of the micro/C-OS kernel [12]
and five system tasks including Startup task, Shell task,
Diagnosis task, LoaderRxrdy task and Loader_Service
task [16]. The system tasks download, execute and
control the application programs using the RS-232C
communication [16].

As shown in Table 3, the number of total lines, file
size and programming language for the target RTOS
and seven applications are listed. The generated
applications had various sizes from 1KB to 971KB due
to the limited space of RAM. The maximum size of

application could not exceed 1MB on the
TMS320C32-60 DSP board [14].

Table 3. RTOS and applications

Target
SW

of
Total
Lines

File
Size

Programming
Language

RTOS 9446 2.08 MB In-line assembly,
C language

App.1 4 1 KB FBD

App.2 301 40 KB FBD

App.3 1501 197 KB FBD

App.4 3001 394 KB FBD

App.5 4501 592 KB FBD

App.6 6001 700 KB FBD

App.7 7501 971 KB FBD

In this empirical study, we generated faulty RTOS

programs by applying CRM and CRH to the RTOS.
We performed fault-based interface testing by applying
CRM and CRH during integration of RTOS and
application in the PLC. Here, the fault-based interface
means that the identified interface has a fault generated
by CRM or CRH.

We performed an interface testing based on run-
time monitoring [17, 18]. As shown in Figure 8, we
stopped running RTOS by setting break points on the
interfaces and monitored the current results. We
determined ‘pass’ if the monitored results satisfied the
expected output, and we did ‘fail’ otherwise. To
monitor the results, we used the ‘watch window’ and
the ‘memory map’ of Code Composer [19] that is
supported by the TI DSP board.

Table 4. The number of interfaces between RTOS and

application

rx_
mode

rx_
header

[]

rx_
bcs

rx_
chec
ksum

rx_
text[]

rx_
text_
ptr

tx_
return Total

11
(1)

17
(1)

10
(-)

10
(-)

6
(-)

6
(-)

5
(-)

65
(2)

(): # of Fault Injection Target - : Not Available

As shown in Table 4, there were 65 interfaces for

the interface between the target RTOS and application,
such as rx_mode, rx_header[], rx_bcs, rx_checksum,
rx_text[], rx_text_ptr and tx_return.

RTOS source code

Application

Emulator

Download DeleteRun Stop

Set a break point
on the interface

Monitor the ‘watch
window’ and the
‘memory map’

RTOS source code

Application

Emulator

Download DeleteRun Stop

Set a break point
on the interface

Monitor the ‘watch
window’ and the
‘memory map’

Figure 8. Test Environment

The result of interface testing during the integration

of RTOS and application is as follows:
First of all, we performed an interface testing for

the original RTOS program and seven applications.
For each state of application tasks including,
‘Download’, ‘Run’, ‘Stop’ and ‘Delete’, we performed
the testing to cover 65 interfaces for 100%.

In case of ‘Download’, the tested path was in order
of ‘ENQ – SOH – WHD0 – WHD1 – STX – WTXT –
ETB – WBC0 – WBC1 – WBEND – data_load() –
EOT’. In case of ‘Run’, ‘Stop’ and ‘Delete’, the order
was ‘ENQ – SOH – WHD0 – WHD1 – STX – WTXT
– ETX – WEC0 – WEC1 – WTEND – OS API –
EOT’. Here, OS API was ‘task_fork()’, ‘task_kill()’
and ‘task_delete()’ for ‘Run’, ‘Stop’ and ‘Delete’,
respectively.

Second of all, we performed fault injection testing
by applying the proposed mutation operators to RTOS.
As shown in Table 4, there are two FITs. We could
only modify the FIT while ‘WBEND or WTEND is in
execution’ or ‘prior to the transmission of ‘ACK’ or
‘NAK’ of the corresponding protocol’.

For the states of seven applications, we generated
56 faulty RTOS programs by applying both mutation
operators, CRM and CRH to RTOS as listed in
Appendix A. Applying the total number of 28 CRMs
has resulted in the change of the execution path of RS-
232C communication. Applying the same number of
CRHs has resulted in the change of the execution path
of OS API. These results represented the potential of
using the faults generated by CRM and CRH when
injecting faults to RTOS.

5. Conclusion and future work

RTOS, mounted on an embedded system, is

responsible for running the whole system by executing
applications. RTOS is time-dependent and tightly
coupled with hardware devices and application. It
makes RTOS difficult to test in spite of its high
dependability.

The interface of RTOS and application are based on
RS-232C communication protocol. The interface gets
formed through rx_symol_name in the event of
receive-communication while it gets formed through
tx_symbol_name in the event of transmit-
communication. These interfaces are the location for
monitoring and debugging RTOS as well as coverage
criteria for selecting test cases. We refer this as
interface testing.

In this paper, we proposed the mutation operators to
test fault-based interface between RTOS and
application. The conventional methods to generate a
mutation which is to syntactically change FIT of the
original program are inappropriate in case of injecting
a fault into RTOS program. As an alternative, we
considered how to semantically change FIT of the
programs in RTOS at a proper time in its running
environment. To accomplish this, we analyzed the
interfaces in three respects, ‘When to inject a fault?’,
‘Where to inject a fault?’ and ‘How to inject a fault?’.

Based on the analysis of these three respects, we
proposed the mutation operators CRM and CRH that
change the value of rx_mode and rx_header[]
respectively during the following two occasions: while
‘WBEND or WTEND’ is in execution and prior to the
transmission of ‘ACK’ or ‘NAK’ of corresponding
protocol.

We applied the mutation operators to interface
testing during the integration of RTOS and application
in the industrial PLC. The result from the empirical
study showed the potentials of using faults generated
by CRM and CRH in the fault injection to RTOS.

Currently, we focus on developing the mutation
operators to test interface between RTOS and
application. In the future, we plan to extend the
mutation operators to test interface of different layers
such as RTOS and hardware.

6. References

[1] M. A. Tsoukarellas, V. C. Gerogiannis and K. D.

Economides, “Systemically Testing a Real-Time
Operating System”, IEEE Micro, Vol.15, pp.50-60,
1995.

[2] EIA/TIA-232-C, Interface Between Data Terminal

Equipment and Data Circuit-Terminating Equipment
Employing Serial Binary Data Interchange, EIA
(Electronic Industries Alliance), 1991.

[3] A. Sung, B. Choi and S. Shin, “An Interface Test
Model for Hardware-dependent Software and
Embedded OS API of the Embedded System”, Journal
of Computer Standards and Interfaces, ELSEVIER,
2006, to be published.

[4] R. A. Demillo, R. J. Lipton and F. G. Sayward, “Hints
on Test Data Selection: Help for the practicing
programmer”, IEEE Computer, Vol.11, pp.34-31, 1978.

[5] A. J. Offutt, “Investigations of the Software Testing
Coupling Effect”, ACM Transactions on Software
Engineering and Methodology, Vol.1, pp.5-20, 1992.

[6] M. E. Delamaro, J. C. Maldonado and A. P. Mathur,
"Interface Mutation: An Approach for Integration
Testing", IEEE Transactions on Software Engineering,
vol.27, pp228~247, 2001.

[7] Technical Report SERC-TR-41-P, Design of Mutant
Operators for the C Programming Language, Software
Engineering Research Center, Purdue University,
Rev.1.04, 2006.

[8] R. T. Alexander, J. M. Bieman, S. Chosh and B. Ji.,
"Mutation of Java Objects", in the Proc. of
International Symposium on. Software Reliability
Engineering, pp.341~351, 2002.

[9] H. Yoon, and B. Choi, “Effective Test Case Selection
for Component Customization and Its Application to
EJB”, The Software Testing, Verification and
Reliability Journal, vol.14, pp.45~70, 2004.

[10] A. Jerraya and W. Wolf, “Hardware/Software Interface
Codesign for Embedded Systems”, IEEE Computer,
Vol.38, pp.63~69, 2005.

[11] IEEE Standard 1003.1-2001, IEEE Standard for
Information technology – POSIX (Portable Operating
System Interface), IEEE, 2001.

[12] J.J Labrosse, MicroC/OS-II, The Real-Time Kernel,
CMP Books, 1999.

[13] A. Mader, “A Classification of PLC Models and
Applications”, in the Proc. of International Workshop
on Discrete Event Systems -- Discrete Event Systems,
Analysis and Control, Kluwer Academic Publishers,
pp.239-247, 2000.

[14] TMS320C32 Digital Signal Processor available in
http://www.ti.com/, Texas Instrument, 1998.

[15] IEC, International Standard for Programmable
Controllers: Programming Languages, Technical
Report IEC 1131 part 3, IEC (International Electro
technical Commission), 1993.

[16] KNICS-PLC-SDS331-01, Software Design
Specification for the PLC Processor Module, KAERI
(Korea Atomic Energy Research Institute), 2006.

[17] S. E. Chodrow, F. Jahnian,and M. Donner, “Run-Time
Monitoring of Real-Time Systems”, in the Proc. of
Run-Time Systems Symposium, IEEE, pp.74-83, 1991.

[18] S. Ricardo and Jr. J. R. de Almeida, “Run-Time
Monitoring for Dependable Systems: an Approach and
a Case Study”, in the Proc. of International Symposium
on Reliable Distributed System, IEEE, pp.41-49, 2004.

[19] SPRU296, Code Composer User’s Guide, Texas
Instrument, 1999.

[20] J.H. Andrews, L.C. Briand and Y. Labiche, “Is
Mutation an Appropriate Tool for Testing
Experiments?”, in the Proc. of International
Conference on Software Engineering, pp. 402~411,
2005.

Appendix A. Generated mutants
Original

App.
Mutation Operator

Download Run Stop Delete

Original rx_mode=WSTX;
[line # 282]

rx_mode=WEOT;
[line # 314]

rx_mode=WEOT;
[line # 314]

rx_mode=WEOT;
[line # 314]

CRM rx_mode=WEOT; rx_mode=WENQ; rx_mode=ETB; rx_mode=WBC0;

Original rx_header[1]=‘D’;
[line # 275]

rx_header[1]=‘R’;
[line # 311]

rx_header[1]=‘S’;
[line # 311]

rx_header[1]=‘D’;
[line # 311]

App.1

CRH rx_header[1]=‘S’; rx_header[1]=‘C’; rx_header[1]=‘D’; rx_header[1]=‘R’;

Original rx_mode=WSTX;
[line # 282]

rx_mode=WEOT;
[line # 314]

rx_mode=WEOT;
[line # 314]

rx_mode=WEOT;
[line # 314]

CRM rx_mode=WENQ; rx_mode=STX; rx_mode=SOT; rx_mode=WBC1;

Original rx_header[1]=‘D’;
[line # 275]

rx_header[1]=‘R’;
[line # 311]

rx_header[1]=‘S’;
[line # 311]

rx_header[1]=‘D’;
[line # 311]

App.2

CRH rx_header[1]=‘S’; rx_header[1]=‘D’; rx_header[1]=‘C’; rx_header[1]=‘S’;

Original rx_mode=WSTX;
[line # 282]

rx_mode=WEOT;
[line # 314]

rx_mode=WEO
[line # 314]

rx_mode=WEOT;
[line # 314]

CRM rx_mode=WBEND; rx_mode=WTB; rx_mode=EOT; rx_mode=WTXT;

Original rx_header[1]=‘D’;
[line # 275]

rx_header[1]=‘R’;
[line # 311]

rx_header[1]=‘S’;
[line # 311]

rx_header[1]=‘D’;
[line # 311]

App.3

CRH rx_header[1]=‘S’; rx_header[1]=‘S’; rx_header[1]=‘R’; rx_header[1]=‘C’;

Original rx_mode=WSTX;
[line # 282]

rx_mode=WEOT;
[line # 314]

rx_mode=WEOT;
[line # 314]

rx_mode=WEOT;
[line # 314]

CRM rx_mode=ENQ; rx_mode=WHD0; rx_mode=WBC1; rx_mode=WTXT;

Original rx_header[1]=‘D’;
[line # 275]

rx_header[1]=‘R’;
[line # 311]

rx_header[1]=‘S’;
[line # 311]

rx_header[1]=‘D’;
[line # 311]

App.4

CRH rx_header[1]=‘S’; rx_header[1]=‘C’; rx_header[1]=‘R’; rx_header[1]=‘S’;

Original rx_mode=WSTX;
[line # 282]

rx_mode=WEOT;
[line # 314]

rx_mode=WEOT;
[line # 314]

rx_mode=WEOT;
[line # 314]

CRM rx_mode=STX; rx_mode=WHD1; rx_mode=WENQ; rx_mode=EOT;

Original rx_header[1]=‘D’;
[line # 275]

rx_header[1]=‘R’;
[line # 311]

rx_header[1]=‘S’;
[line # 311]

rx_header[1]=‘D’;
[line # 311]

App.5

CRH rx_header[1]=‘S’; rx_header[1]=‘D’; rx_header[1]=‘R’; rx_header[1]=‘C’;

Original rx_mode=WSTX;
[line # 282]

rx_mode=WEOT;
[line # 314]

rx_mode=WEOT;
[line # 314]

rx_mode=WEOT;
[line # 314]

CRM rx_mode=WHD1; rx_mode=EOT; rx_mode=WTXT; rx_mode=WHD0;

Original rx_header[1]=‘D’;
[line # 275]

rx_header[1]=‘R’;
[line # 311]

rx_header[1]=‘S’;
[line # 311]

rx_header[1]=‘D’;
[line # 311]

App.6

CRH rx_header[1]=‘S’; rx_header[1]=‘S’; rx_header[1]=‘C’; rx_header[1]=‘R’;

Original rx_mode=WSTX;
[line # 282]

rx_mode=WEOT;
[line # 314]

rx_mode=WEOT;
[line # 314]

rx_mode=WEOT;
[line # 314]

CRM rx_mode=SOH; rx_mode=WBEND; rx_mode=STX; rx_mode=WHD1;

Original rx_header[1]=‘D’;
[line # 275]

rx_header[1]=‘R’;
[line # 311]

rx_header[1]=‘S’;
[line # 311]

rx_header[1]=‘D’;
[line # 311]

App.7

CRH rx_header[1]=‘S’; rx_header[1]=‘C’; rx_header[1]=‘C’; rx_header[1]=‘C’;

