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Abstract 

 
Testing interfaces of an embedded system is 

important since the heterogeneous layers such as 
hardware, OS and application are tightly coupled. We 
propose the mutation operators in three respects, 
‘When?’, ‘Where?’ and ‘How?’ in order to inject a 
fault into RTOS program when testing interface 
between RTOS and application. Injecting a fault 
without affecting the RTOS in run-time environment is 
the core of proposed mutation operators. We apply the 
mutation operators to interface testing during the 
integration of RTOS and application in the industrial 
programmable logic controller. 

 
 
1. Introduction 
 

RTOS (Real Time Operating System) manages an 
embedded system by executing applications. To test 
embedded software such as RTOS and application is 
necessary before the permanent mount of embedded 
software [1]. 

RTOS consists of kernel and system tasks. The 
system tasks are executable control units on kernel that 
are responsible for running the RTOS. They are tightly 
coupled with kernel, hardware devices and 
applications. RTOS manages an application as a 
system task. Therefore, it is imperative to test interface 
between RTOS and application. RTOS and application 
communicate via RS-232C protocol defined as a 
standard by EIA (Electronic Industries Alliance) [2]. It 
is also known as UART (Universal Asynchronous 
Receiver/Transmitter). 

In this paper, we test interfaces between RTOS and 
application by using system tasks on kernel. Here, an 
interface refers to a gateway that controls the 
communication between two different layers in an 
embedded system [3]. This interface is the focal point 
for monitoring and debugging an embedded system 

where the heterogeneous layers are tightly coupled. 
Also, this interface becomes the criteria for test 
coverage that is used to select test cases [3]. We define 
it as interface testing.  

Generally, mutation analysis is a fault-based testing 
technique that helps the tester create a set of test cases 
to detect specific, predetermined type of faults [4]. 
When we test software by focusing on a small 
restricted class of faults, we can expect to detect more 
complicated faults as well, giving us confidence that 
fault-based testing strategies can provide effective 
ways to test software [5]. Experimental data shows that 
faulty versions of a program, called mutants generated 
by applying mutation operators are similar to real 
faults [20].  

Mutation operators generate mutant programs by 
injecting a fault into the FIT (Fault Injection Target) of 
a source program. In other words, the mutant programs 
are generated by changing the FIT syntactically. Other 
studies have already developed mutation operators for 
procedural programs, object-oriented programs and 
component-based programs by deciding the FIT 
carefully [6, 7, 8, 9].  

It is important to determine when to inject a fault 
since RTOS is time-dependent [1]. It is also important 
to determine the FIT of RTOS because locations for 
injecting a fault are limited. If you modify the 
locations for controlling the entire embedded system 
such as kernel, it would cause the system to stop. 
Therefore, the fault injection time and the fault 
injection target for RTOS should be carefully 
considered when developing the mutation operators. In 
this paper, we propose the mutation operators in three 
respects, ‘When?’, ‘Where?’ and ‘How?’ in order to 
inject a fault into RTOS program when testing 
interface between RTOS and application.  

This paper consists of the following sections: 
Section 2 describes the interfaces between RTOS and 
application. Section 3 accounts for the mutation 
operators. Section 4 describes the empirical study. 



Finally, section 5 discusses the conclusion and future 
work. 

 
2. Interface between RTOS and application 
 
As shown in Figure 1, an embedded system consists 

of hardware layer, OS layer and application layer [10]. 
In case of RTOS, OS layer is subdivided into system 
task layer and kernel layer. Interface between RTOS 
and application is defined according to the RS-232C 
protocol. 
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Figure 1. Architecture of an Embedded System 
 
Application communicates with RTOS by sending 

headers and data, based on the defined RS-232C 
communication protocol. Figure 2 represents the 
process of RS-232C communication between RTOS 
and application in a sequential manner. The 
parentheses in Figure 2 represent the RS-232C 
protocol in each communication step as following: 
 

Step1 RTOS enables a queue by calling OS API 
(Application Program Interface) ‘OSQPend()’. 
The queue is used to receive-communication. 
Then, the RTOS transmits ACK or NAK using 
semaphore by calling OS API ‘OSSemPend()’. 

Step2 After the application sends the starting header, 
RTOS transmits ACK or NAK. 

Step3 After the application sends the headers, RTOS 
transmits ACK or NAK. 

Step4 If RTOS receives data or text from application, 
checksum is calculated using the received 
header information. Then, RTOS transmits 
ACK or NAK. 

Step5  When the application has no more data to send, 
it sends EOT (End of Text). 

 

As shown in Figure 2, RTOS complies with the 
standard RS-232C protocol. RTOS has interfaces with 
rx_symbol_name during the receiving phase while 
RTOS has interfaces with tx_symbol_name during the 
transmitting phase. Here, rx_symbol_name and 
tx_symbol_name including the prefix ‘rx’ and ‘tx’ are 
global variables in the RTOS source code. 

 
ApplicationApplication RTOSRTOS

NAK / ACK

NAK / ACK

NAK / ACK

NAK / ACK

ENQ

SOH

EOT

WHD0

WHD1

STX

ETB / ETX

WBC0 / WEC0

WBC1 / WEC1

WBEND / WTEND

WTXT

NAK / ACK

Enables Queue. (Step1)

Sends ACK or NAK. (Step 1)
Starts sending headers. (Step 2)

Sends a header[0]. (Step 3)

Sends a text[] and 
Calculate checksums. 
(Step 4)

Sends ACK or NAK. (Step 4)

End of Text. (Step 5)

Sends ACK or NAK. (Step 2)

Sends ACK or NAK. (Step 3)

Sends a header[1]. (Step 3)

Sends ACK or NAK. (Step 3)

ApplicationApplication RTOSRTOS

NAK / ACK

NAK / ACK

NAK / ACK

NAK / ACK

ENQ

SOH

EOT

WHD0

WHD1

STX

ETB / ETX

WBC0 / WEC0

WBC1 / WEC1

WBEND / WTEND

WTXT

NAK / ACK

Enables Queue. (Step1)

Sends ACK or NAK. (Step 1)
Starts sending headers. (Step 2)

Sends a header[0]. (Step 3)

Sends a text[] and 
Calculate checksums. 
(Step 4)

Sends ACK or NAK. (Step 4)

End of Text. (Step 5)

Sends ACK or NAK. (Step 2)

Sends ACK or NAK. (Step 3)

Sends a header[1]. (Step 3)

Sends ACK or NAK. (Step 3)

 
Figure 2. RS-232C Communication Protocol 

 
The application received from RS-232C 

communication runs with other system tasks in a form 
of ‘application task’ which is managed by ‘Task 
Management’ API [11, 12] provided by the kernel. 
Hence, ‘application task’ has ‘Download’, ‘Run’, 
‘Stop’ and ‘Delete’ states.  

Table 1 shows both RTOS execution path based on 
RS-232C and interfaces to be monitored for each state 
of ‘application task’. As shown in Table 1, the 
execution path consists of the executed RS-232C 
protocol and the corresponding OS API. 

 
Table 1. Interface between RTOS and application 

State of 
app. task Execution path on RTOS Interface 

Download
ENQ-SOH-WHD0-WHD1-
STX-WTXT-ETB-WBC0-
WBC1-WBEND-
data_load()-EOT 

rx_symbol_name 
tx_symbol_name 

Run 
ENQ-SOH-WHD0-WHD1-
STX-WTXT-ETX-WEC0-
WEC1-WTEND-
task_fork()-EOT 

rx_symbol_name 
tx_symbol_name 



State of 
app. task Execution path on RTOS Interface 

Stop 
ENQ-SOH-WHD0-WHD1-
STX-WTXT-ETX-WEC0-
WEC1-WTEND-task_kill()-
EOT 

rx_symbol_name 
tx_symbol_name 

Delete 
ENQ-SOH-WHD0-WHD1-
STX-WTXT-ETX-WEC0-
WEC1-WTEND-
task_delete()-EOT 

rx_symbol_name 
tx_symbol_name 

 
 

3. Mutation operators 
 

3.1. Problems in injecting a fault into RTOS 
 
Mutation operators generate mutation programs by 

changing FIT syntactically. Determining the 
appropriate time and the location for fault injection is 
critical for two reasons: RTOS is time-dependent 
software, and FIT of RTOS is limited. 

Figure 3 represents the failed situation for 
communication between RTOS and application in the 
emulator based run-time environment. Negligence of 
time and target for fault injection causes ‘checksum 
error’ as shown in Figure 3. Here, checksum refers to 
calculated value for communication between RTOS 
and application in run-time environment where target 
board is mounted. ‘Checksum error’ means abnormal 
termination of the running RTOS and application on 
the target board when the calculation result is different. 
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Figure 3. Checksum error of RTOS 

 
3.2. Mutation operators 

 
In order to prevent unexpected errors such as 

checksum error, we cannot apply the existing methods 
for generating mutant programs by syntactic change of 
the FIT. We should inject a fault without affecting the 

RTOS in run-time environment. We call it ‘mutant 
generation by changing FIT semantically’. In this 
paper, we propose the mutation operators in three 
respects, ‘When to inject a fault into RTOS?’, ‘Where 
to inject a fault into RTOS?’ and ‘How to inject a fault 
into RTOS?’. 

 
� When: It is not possible to inject a fault and to 

monitor the behavior at any time since RTOS is 
time-dependent software. The analysis of ‘When?’ 
is required in order to determine the time for fault 
injection. 

 
� Where: RTOS source code that developers can 

modify is limited. If you change the locations to 
control the entire embedded system such as kernel, it 
makes the entire system stop. Therefore, it is 
imperative to identify where in RTOS source code 
can be modified. 

 
� How: A method to generate faulty versions of 

program is necessary, especially when regarding 
how to change the program code. 

 
3.2.1. When: Fault injection time. Injecting a fault 
into RTOS during the RS-232C communication causes 
‘checksum error’ in most of times. It is important to 
identify possible time for injecting a fault into RTOS 
during the RS-232C communication. 
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Figure 4. Fault injection time 

 
Figure 4 is a partial capture of RS-232C 

communication protocol that is fully described in 
Figure 2. As shown in Figure 4, fault injection to 
RTOS is possible only ‘while WBEND or WTEND is 
in execution’ or ‘prior to the transmission of ACK or 
NAK of corresponding protocol’. This moment is also 
when checksum calculation for the communication 
between two layers is complete and about to transmit 
‘EOT’ after completing the RS-232C communication. 



If fault injection occurs at other times, RTOS generates 
‘checksum error’ and comes to a halt.  

 
3.2.2. Where: Fault injection target. Fault Injection 
Target (FIT) should be the interface of RTOS that is 
affected by RS-232C communication protocol. The 
interface gets formed through rx_symol_name in the 
event of receive-communication while it gets formed 
through tx_symbol_name in the event of transmit-
communication.  

Table 2 describes the rx_symbol_name and 
tx_symbol_name that correspond to RS-232C 
communication protocol in more details. Steps in 
Table 2 are the process of RS-232C communication 
mentioned in Section 2. Here, Step4 is subdivided 
into Step4a:  ‘STX ~ WBC1 or STX ~ WBC0’ and 
Step4b: ‘WBEND ~ NAK or ACK’ or ‘WTEND ~ 
NAK or ACK’. 
 

Table 2. Fault injection target 
RS-232C Protocol 

Interface Step 
1 

Step
2 

Step 
3 

Step 
4a 

Step
4b

Step
5 

rx_mode { { { { ~ { 

rx_header[] - - { { ~ { 

rx_bcs - { { { { { 

rx_checksum - { { { { { 

rx_text[] - - - { { { 

rx_text_ptr - - - { { { 

tx_return { { { { { { 

-: Not Available                 ~: Fault Injection Target 
{: Corresponding Interface to the RS-232C Protocol 

 
As shown in Table 2, rx_mode and rx_header[] are 

the FITs among the identified interfaces because they 
are the modifiable locations in RTOS program during 
the time of fault injection. rx_mode saves next protocol 
to be sent and rx_header[] saves the received header 
information. These two are modifiable whereas rx_bcs, 
rx_checksum, tx_return, rx_text[] and rx_text_ptr are 
not during the time of fault injection. 

In other words, if you inject a fault into 
rx_symbol_name or tx_symbol_name other than 
rx_mode and rx_header[], RTOS generates ‘checksum 
error’. It is because rx_bcs, rx_checksum and tx_return 
are used in the calculation of the checksum for the RS-
232C communication between two layers and rx_text[] 
and rx_text_ptr are application data themselves. 
 

3.2.3. How: Fault injection method. Faulty versions 
of the program, called mutant programs, are generated 
by semantic change of the FIT of RTOS program at a 
proper time.  

Figure 5 shows how to generate a faulty program 
with two mutation operators, CRM and CRH. CRM 
and CRH operators change the value of rx_mode and 
rx_header[] respectively upon the completion of 
checksum calculation for the RS-232C communication, 
and prior to the transmission of ‘EOT’. 
 
 
Generate_Mutant_Programs (Time, Interface) 
{ 
  Time = Execution Time according to the RS-232C 

communication; 
  FIT = Interface; 
 
while  ( Time for sending ‘WBEND or WTEND’  

< Time < Time for sending ‘ACK or NAK’ of 
‘WBEND or WTEND’)  

{ 
switch(FIT) 
{ 
   /* CRM: Change the value of Rx_Mode */ 

case ‘rx_mode’:  
change the value of rx_mode; 
break; 

 
/* CRH: Change the value of Rx_Header[] */ 

             case ‘rx_header[]’: 
                      change the value of header; 
                      break;  
 

}    /* End of switch */ 
   }    /* End of while */ 
}  /* End of Generate_Mutant Programs() */ 
 

Figure 5. Mutation operators 
 

CRM generates a faulty program by changing the 
value of rx_mode. The execution path in RTOS 
program is changed according to the value of rx_mode 
since rx_mode determines the execution path of RS-
232C communication.  
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Figure 6. An example of CRM 



Taking an example of CRM, Figure 6 is a part of 
the RTOS source code that implements RS-232C 
communication. The faulty program Figure 6 is 
generated by changing from ‘EOT’ to ‘ENQ’ while 
‘WBEND’ in execution. 

CRH generates a faulty program by changing the 
ASCII header value in rx_header[]. Received 
rx_header[] determines RTOS service and hence, the 
change in the value of rx_header[] changes the OS 
API to call.  

 

…
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Figure 7. An example of CRH 

 
Taking an example of CRH, Figure 7 is a part of the 

RTOS source code that implements RS-232C 
communication. Since the value of rx_header[1] has 
changed from ‘S’ to ‘D’, task_delete() is called at the 
times when task_kill() is supposed to be called. 
 
4. An empirical study 
 

We have applied the proposed mutation operators to 
the RTOS in the industrial PLC (Programmable Logic 
Controller) [13] based on the TI TMS320C32-60 DSP 
(Digital Signal Processor) board [14]. PLC is the 
embedded system that is broadly used in the industry 
such as nuclear power plant, railroad control system 
and production line where the systems require real-
time processing.  PLC application is written in 
programming language such as FBD (Function Block 
Diagram) defined in the IEC (International Electro 
technical Commission) standard 61131-3 [15]. 

The RTOS consists of the micro/C-OS kernel [12] 
and five system tasks including Startup task, Shell task, 
Diagnosis task, LoaderRxrdy task and Loader_Service 
task [16]. The system tasks download, execute and 
control the application programs using the RS-232C 
communication [16]. 

As shown in Table 3, the number of total lines, file 
size and programming language for the target RTOS 
and seven applications are listed. The generated 
applications had various sizes from 1KB to 971KB due 
to the limited space of RAM. The maximum size of 

application could not exceed 1MB on the 
TMS320C32-60 DSP board [14]. 
 

Table 3. RTOS and applications 

Target
SW 

# of 
Total 
Lines 

File  
Size 

Programming 
Language 

RTOS 9446 2.08 MB In-line assembly,
C language 

App.1 4 1 KB FBD 

App.2 301 40 KB FBD 

App.3 1501 197 KB FBD 

App.4 3001 394 KB FBD 

App.5 4501 592 KB FBD 

App.6 6001 700 KB FBD 

App.7 7501 971 KB FBD 

 
In this empirical study, we generated faulty RTOS 

programs by applying CRM and CRH to the RTOS. 
We performed fault-based interface testing by applying 
CRM and CRH during integration of RTOS and 
application in the PLC. Here, the fault-based interface 
means that the identified interface has a fault generated 
by CRM or CRH. 

We performed an interface testing based on run-
time monitoring [17, 18]. As shown in Figure 8, we 
stopped running RTOS by setting break points on the 
interfaces and monitored the current results. We 
determined ‘pass’ if the monitored results satisfied the 
expected output, and we did ‘fail’ otherwise. To 
monitor the results, we used the ‘watch window’ and 
the ‘memory map’ of Code Composer [19] that is 
supported by the TI DSP board.  
 
Table 4. The number of interfaces between RTOS and 

application 

rx_ 
mode

rx_ 
header

[] 

rx_
bcs

rx_
chec
ksum

rx_ 
text[] 

rx_ 
text_ 
ptr 

tx_ 
return Total

11 
(1) 

17 
(1) 

10
(-)

10
(-)

6 
(-) 

6 
(-) 

5 
(-) 

65 
(2)

(): # of Fault Injection Target - : Not Available 
 
As shown in Table 4, there were 65 interfaces for 

the interface between the target RTOS and application, 
such as rx_mode, rx_header[], rx_bcs, rx_checksum, 
rx_text[], rx_text_ptr and tx_return. 
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Figure 8. Test Environment 
 
The result of interface testing during the integration 

of RTOS and application is as follows: 
First of all, we performed an interface testing for 

the original RTOS program and seven applications. 
For each state of application tasks including, 
‘Download’, ‘Run’, ‘Stop’ and ‘Delete’, we performed 
the testing to cover 65 interfaces for 100%.  

In case of ‘Download’, the tested path was in order 
of ‘ENQ – SOH – WHD0 – WHD1 – STX – WTXT – 
ETB – WBC0 – WBC1 – WBEND – data_load() – 
EOT’. In case of ‘Run’, ‘Stop’ and ‘Delete’, the order 
was ‘ENQ – SOH – WHD0 – WHD1 – STX – WTXT 
– ETX – WEC0 – WEC1 – WTEND – OS API – 
EOT’. Here, OS API was ‘task_fork()’, ‘task_kill()’ 
and ‘task_delete()’ for ‘Run’, ‘Stop’ and ‘Delete’, 
respectively.  

Second of all, we performed fault injection testing 
by applying the proposed mutation operators to RTOS. 
As shown in Table 4, there are two FITs. We could 
only modify the FIT while ‘WBEND or WTEND is in 
execution’ or ‘prior to the transmission of ‘ACK’ or 
‘NAK’ of the corresponding protocol’. 

For the states of seven applications, we generated 
56 faulty RTOS programs by applying both mutation 
operators, CRM and CRH to RTOS as listed in 
Appendix A. Applying the total number of 28 CRMs 
has resulted in the change of the execution path of RS-
232C communication. Applying the same number of 
CRHs has resulted in the change of the execution path 
of OS API. These results represented the potential of 
using the faults generated by CRM and CRH when 
injecting faults to RTOS. 

 

5. Conclusion and future work 
 
RTOS, mounted on an embedded system, is 

responsible for running the whole system by executing 
applications. RTOS is time-dependent and tightly 
coupled with hardware devices and application. It 
makes RTOS difficult to test in spite of its high 
dependability.  

The interface of RTOS and application are based on 
RS-232C communication protocol. The interface gets 
formed through rx_symol_name in the event of 
receive-communication while it gets formed through 
tx_symbol_name in the event of transmit-
communication. These interfaces are the location for 
monitoring and debugging RTOS as well as coverage 
criteria for selecting test cases. We refer this as 
interface testing. 

In this paper, we proposed the mutation operators to 
test fault-based interface between RTOS and 
application. The conventional methods to generate a 
mutation which is to syntactically change FIT of the 
original program are inappropriate in case of injecting 
a fault into RTOS program. As an alternative, we 
considered how to semantically change FIT of the 
programs in RTOS at a proper time in its running 
environment. To accomplish this, we analyzed the 
interfaces in three respects, ‘When to inject a fault?’, 
‘Where to inject a fault?’ and ‘How to inject a fault?’. 

Based on the analysis of these three respects, we 
proposed the mutation operators CRM and CRH that 
change the value of rx_mode and rx_header[] 
respectively during the following two occasions: while 
‘WBEND or WTEND’ is in execution and prior to the 
transmission of ‘ACK’ or ‘NAK’ of corresponding 
protocol. 

We applied the mutation operators to interface 
testing during the integration of RTOS and application 
in the industrial PLC. The result from the empirical 
study showed the potentials of using faults generated 
by CRM and CRH in the fault injection to RTOS. 

Currently, we focus on developing the mutation 
operators to test interface between RTOS and 
application. In the future, we plan to extend the 
mutation operators to test interface of different layers 
such as RTOS and hardware. 
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Appendix A. Generated mutants 
Original 

App. 
Mutation Operator 

Download Run Stop Delete 

Original rx_mode=WSTX; 
[line # 282] 

rx_mode=WEOT; 
[line # 314] 

rx_mode=WEOT; 
[line # 314] 

rx_mode=WEOT; 
[line # 314] 

CRM rx_mode=WEOT; rx_mode=WENQ; rx_mode=ETB; rx_mode=WBC0; 

Original rx_header[1]=‘D’;
[line # 275] 

rx_header[1]=‘R’; 
[line # 311] 

rx_header[1]=‘S’; 
[line # 311] 

rx_header[1]=‘D’;
[line # 311] 

App.1 

CRH rx_header[1]=‘S’; rx_header[1]=‘C’; rx_header[1]=‘D’; rx_header[1]=‘R’;

Original rx_mode=WSTX; 
[line # 282] 

rx_mode=WEOT; 
[line # 314] 

rx_mode=WEOT; 
[line # 314] 

rx_mode=WEOT; 
[line # 314] 

CRM rx_mode=WENQ; rx_mode=STX; rx_mode=SOT; rx_mode=WBC1; 

Original rx_header[1]=‘D’;
[line # 275] 

rx_header[1]=‘R’; 
[line # 311] 

rx_header[1]=‘S’; 
[line # 311] 

rx_header[1]=‘D’;
[line # 311] 

App.2 

CRH rx_header[1]=‘S’; rx_header[1]=‘D’; rx_header[1]=‘C’; rx_header[1]=‘S’; 

Original rx_mode=WSTX; 
[line # 282] 

rx_mode=WEOT; 
[line # 314] 

rx_mode=WEO 
[line # 314] 

rx_mode=WEOT; 
[line # 314] 

CRM rx_mode=WBEND; rx_mode=WTB; rx_mode=EOT; rx_mode=WTXT; 

Original rx_header[1]=‘D’;
[line # 275] 

rx_header[1]=‘R’; 
[line # 311] 

rx_header[1]=‘S’; 
[line # 311] 

rx_header[1]=‘D’;
[line # 311] 

App.3 

CRH rx_header[1]=‘S’; rx_header[1]=‘S’; rx_header[1]=‘R’; rx_header[1]=‘C’;

Original rx_mode=WSTX; 
[line # 282] 

rx_mode=WEOT; 
[line # 314] 

rx_mode=WEOT; 
[line # 314] 

rx_mode=WEOT; 
[line # 314] 

CRM rx_mode=ENQ; rx_mode=WHD0; rx_mode=WBC1; rx_mode=WTXT; 

Original rx_header[1]=‘D’;
[line # 275] 

rx_header[1]=‘R’; 
[line # 311] 

rx_header[1]=‘S’; 
[line # 311] 

rx_header[1]=‘D’; 
[line # 311] 

App.4 

CRH rx_header[1]=‘S’; rx_header[1]=‘C’; rx_header[1]=‘R’; rx_header[1]=‘S’; 

Original rx_mode=WSTX; 
[line # 282] 

rx_mode=WEOT; 
[line # 314] 

rx_mode=WEOT; 
[line # 314] 

rx_mode=WEOT; 
[line # 314] 

CRM rx_mode=STX; rx_mode=WHD1; rx_mode=WENQ; rx_mode=EOT; 

Original rx_header[1]=‘D’;
[line # 275] 

rx_header[1]=‘R’; 
[line # 311] 

rx_header[1]=‘S’; 
[line # 311] 

rx_header[1]=‘D’;
[line # 311] 

App.5 

CRH rx_header[1]=‘S’; rx_header[1]=‘D’; rx_header[1]=‘R’; rx_header[1]=‘C’;

Original rx_mode=WSTX; 
[line # 282] 

rx_mode=WEOT; 
[line # 314] 

rx_mode=WEOT; 
[line # 314] 

rx_mode=WEOT; 
[line # 314] 

CRM rx_mode=WHD1; rx_mode=EOT; rx_mode=WTXT; rx_mode=WHD0; 

Original rx_header[1]=‘D’;
[line # 275] 

rx_header[1]=‘R’; 
[line # 311] 

rx_header[1]=‘S’; 
[line # 311] 

rx_header[1]=‘D’;
[line # 311] 

App.6 

CRH rx_header[1]=‘S’; rx_header[1]=‘S’; rx_header[1]=‘C’; rx_header[1]=‘R’;

Original rx_mode=WSTX; 
[line # 282] 

rx_mode=WEOT; 
[line # 314] 

rx_mode=WEOT; 
[line # 314] 

rx_mode=WEOT; 
[line # 314] 

CRM rx_mode=SOH; rx_mode=WBEND; rx_mode=STX; rx_mode=WHD1; 

Original rx_header[1]=‘D’;
[line # 275] 

rx_header[1]=‘R’; 
[line # 311] 

rx_header[1]=‘S’; 
[line # 311] 

rx_header[1]=‘D’;
[line # 311] 

App.7 

CRH rx_header[1]=‘S’; rx_header[1]=‘C’; rx_header[1]=‘C’; rx_header[1]=‘C’;

 


