
The SESAME Experience: from Assembly Languages to Declarative Models

Yves Crouzet, Hélène Waeselynck, Benjamin Lussier, David Powell
first-name.last-name@laas.fr

LAAS-CNRS, University of Toulouse
7, Avenue du Colonel Roche

31077 Toulouse Cedex 4 – France

Abstract

SESAME (Software Environment for Software
Analysis by Mutation Effects) is a fault injection tool
using mutation as the target fault model. It has been
used for 15 years to support dependability research at
LAAS-CNRS. A salient feature of SESAME is that it is
multi-language. This made it possible to inject faults
into software written in assembly languages,
procedural languages (Pascal, C), a data-flow
language (LUSTRE), as well as in a declarative
language for temporal planning in robotics. This
paper provides an overview of the tool, and reports on
its use in experimental research addressing either fault
removal or fault tolerance topics.

1. Introduction

SESAME (Software Environment for Software
Analysis by Mutation Effects) is a mutation
environment developed by the Dependable Computing
and Fault Tolerance Group at LAAS-CNRS.

Central to the research of the group is the notion of
fault, yielding a structuring of our activities according
to the four means to attain dependability [4]:
• Fault prevention to prevent the occurrence or

introduction of faults.
• Fault tolerance to avoid service failures in the

presence of faults.
• Fault removal to reduce the number and

severity of faults.
• Fault forecasting to estimate the present

number, the future incidence, and the likely
consequences of faults.

In this context, fault injection may be used as an
experimental technique to assess the effectiveness of
fault removal methods, to estimate the consequences of
faults on a target system, or as a testing method for
removing development faults from fault-tolerance
mechanisms. Indeed, the group has a long tradition of
developing fault injection tools. The target faults span

from hardware faults injected at the pin level [1], into
VHDL models [2] or in memory [3], to software faults
injected into the source code [5, 6] or at the API of off-
the-shelf components [14]. SESAME falls into the
category of software fault injection tools, using source
code mutation as the target fault model. It was
originally developed to support research on software
testing, which corresponds to the classical usage of
mutation environments [9, 22]. Currently, it is being
used in research on fault tolerance mechanisms for
autonomous robot systems.

A salient feature of SESAME is that it is multi-
language. This made it possible to inject faults into
software written in assembly languages, procedural
languages (Pascal, C), a data-flow language
(LUSTRE), as well as in a declarative language for
temporal planning in robotics. The counterpart of the
multi-language facility is the comparative simplicity of
the supported mutations: SESAME can only produce
mutants that are based on search/replace patterns. When
more sophisticated mutation operators are needed, other
tools must be used1. Despite this limitation, SESAME
has proven a useful experimental support. Since its
first version fifteen years ago, it has been used in the
framework of several research activities. Today, it is
still part of our fault injection toolbox.

This paper provides an overview of the SESAME
experience. Section 2 describes the tool architecture. It
is explained how the kernel is kept completely
independent from the target language. Also, SESAME
can be easily parameterized to use external facilities
like commercial test tools, or user-supplied programs
(to address specific experimental needs). Section 3
reports on the use of SESAME in dependability
research, including both fault removal and fault
tolerance topics. Concluding remarks are provided in
Section 4.

1 For example, the JavaMut tool (also developed in our
group) implements mutation operators based on syntactic
analysis and reflection [5].

2. The SESAME environment

Figure 1 provides an overview of the architecture of
SESAME. It is composed of two main modules
described in Sections 2.1 and 2.2:
• The Mutant Generator, which produces a database

of mutants for the target program(s).
• The Mutant Runner, which executes the mutants

with given test sets.
These generic modules can be tuned to specific

experimental settings by associating them with external
utilities like language compilers, post-processing tools
for automating the analysis of raw results, or
commercial test tools. This is illustrated in Section 2.3
by showing the coupling with the ATTOL test tool
(now IBM Rational Test RealTime).

SESAME runs on standard Unix workstations. The
modules are called via simple Unix commands. They
are parameterized by supplying a configuration file.

..D....D...DD....D

.DD..D...DD....D..

...D...D...DD.....

Mutant
Generator

Mutant
 Runner

 Source
Programs

Test
Sets

Database
of mutants

Mutation
Tables

Figure 1. Overview of SESAME

2.1 The Mutant Generator

In contrast to other environments (e.g., Mothra [15]
or Proteum [8]), SESAME does not offer a fixed set of
mutation operators defined at the syntax level. The user
may edit tables to enter the description of string-level
operators. When these operators are applied to a target
source program, a database of mutants is created. It is
stored as a single file containing the compact
representation of all mutants, so as to minimize disk
space. Technically, the compact representation is the
output result of a diff command. It allows the mutant
to be re-generated from the original source program.
Note that the diff output formats are rich enough to
efficiently accommodate changes affecting several lines
of code. Hence, it is possible to supplement the
database of mutants by additional files describing more
complex faults. We used this possibility to perform
experiments involving both SESAME-generated
mutations and real faults.

Typically, the generator uses three different tables,
each grouping operators from a given category:

• Numerical value replacement.
• Operator replacement.

• Symbol replacement (constants, variables, or
functions).

In each case, the operators are applied using simple
search/replace procedures. Since there is no guarantee
that a produced mutant is syntactically correct (which
would involve a more sophisticated implementation
with preliminary parsing), it has to be validated before
being stored in the database. The usual validation is to
try to compile the mutant using an external compiler.
If the mutant successfully compiles, and the resulting
object code is different from the one of the original
program, then the mutant is stored.

The main advantage of this crude procedure is that
the generation module can be used whatever the source
language. Tackling a new target only requires the
mutation tables to be adapted. Generally speaking,
tables working on numerical values or operators are
language specific, while tables working on symbols are
more specific to a target program.

Table 1 shows examples of mutation operators on
integer values (here, their definition is adapted to the C
language). Applying these operators consists of finding
any constant value, and then of appending the
corresponding string to it (e.g., 10 is replaced by
10<<1).

Operator Comments
<<1
>>1
+1
-1
^1
^2
~

Multiplication by 2 (left shift)
Division by 2 (right shift)
Adds 1
Subtracts 1
Flips the bit having position 0
Flips the bit having position 1
One’s complement

Table 1. Mutations on integer values

Table 2 exemplifies mutation operators working on
language operators, or on symbols. They are
implemented by search/replace procedures on strings.
Whenever the target string (on the lefthand side of a
unidirectional arrow) is found in the source code, it is
successively replaced by all alternative strings (on the
righthand side of the arrow). The bidirectional arrow is
used as shorthand for the list of unidirectional
replacements obtained by permuting the lefthand string
with every righthand string. For example,

str1 <---> str2, str3
is shorthand for:

str1 ---> str2, str3
str2 ---> str1, str3
str3 ---> str2, str1

In this way, each element of the set {str1, str2, str3}
is substituted for every other element.

Note that, for permissive languages like C, it may
be desirable to replace an element by another element
having a different type. This is exemplified by the
third definition in Table 2, mixing comparison and
assignment operators (indeed, confusing ‘==’ and ‘=’ is
a typical bug for C programmers).

Operator Comments

* ---> /, +, - Substitution of arithmetic
operators

> <---> <, <=,
 >=, ==

Substitution of comparison
operators

== <---> = Substitution of comparison
and assignment

var1 <---> var2 Substitution of variable
names

true <---> false Substitution of constant
names

Table 2. Mutations on operators and symbols

The pseudo-algorithm in Figure 2 gives a (much)
simplified view of the generation of mutants. The real
generation module involves 900 lines of Pascal code.
The pseudo-algorithm shows how the operations
performed by the module are combined with operations
performed by external utilities (indicated in italic
characters). Two external utilities are called:
• A compiler for the target language, which

allows the object code of the original program
to be produced.

• A mutant validation program, which decides
whether the current mutant should be stored in
the database.

A minimal mutant validation program is supplied
by SESAME. As already explained, it tries to compile
the mutant, and compares its object code to that of the
original program. The latter operation aims to reject
trivially equivalent mutants. Obviously, the crude
comparison of the object codes is by no way sufficient
for the detection of equivalent mutants. This is why
mutant validation is provided as an external facility:
this leaves open the possibility of using advanced tools
for the detection of equivalence, as far as such tools are
available for the target language. We will come back to
this problem in the conclusion of the paper. In practice,
manual detection was used in the framework of all our
experiments.

read configuration file;
call compilation program with original source;

for each line in a mutation table
do
 for each target string occurrence (or each
 integer value) found in original source
 do
 for each replacement string
 do
 introduce mutation in the source;
 call mutant validation program;
 done ;
 done;
done ;

Figure 2. Simplified view of the mutant generator

2.2 The Mutant Runner

The mutant runner allows mutation analysis to be
conducted on one or several test sets. Each mutant
stored in the database is recreated, using the original
program source and the compact mutation description.
After compilation and linking, the mutant is executed
with the test set(s). The outputs are compared to
reference outputs for that test set, in order to determine
whether the mutant was killed. Some post-processing
is also performed according to the desired assessment
measures.

Figure 3 gives a simplified view of the mutant
runner. As in the case of the mutant generator, the
design was driven by the need to easily adapt to
various experimental settings. Flexibility is provided
by making extensive use of external programs
(indicated in italic characters). The programs are
typically simple shell scripts (about 10 lines), which
allows interfacing with more complex utilities,
depending on the experimental needs. Figure 3 shows
six categories of programs:
• The opening session program may, e.g., create

directories for temporary files, import a local
copy of the original source program, etc.

• The preprocessing of a test s e t typically
consists in preparing the test environment for
that set (drivers, reference outputs, etc.).

• The compilation/link program makes the
executable of the mutant.

• The mutant execution program exercises the
mutant with a target test set and records the
outputs.

• The postprocessing of a test set determines
whether the mutant was killed. More detailed
information (e.g., the number of revealing
inputs in the set) may also be produced.

read configuration file;
call opening session program;

for each test set
 call preprocessing test set program;

for each mutant
do
 read reduced description in database;
 generate complete source of mutant;
 call compilation/link program;
 for each test set
 do
 call mutant execution program;
 call postprocessing test set program;
 done ;
done ;

call closing session program;

Figure 3. Simplified view of the mutant runner

• The closing session program performs some
final postprocessing, e.g., to produce statistics
on the whole set of experiments. It also cleans
up the working environment by removing the
temporary files.

The external programs may be used to interface
SESAME with commercial test tools. This will be
exemplified in the next section by the ATTOL tool. In
the remainder of this section, we provide examples of
postprocessing utilities that were developed to support
our experimental needs.

Figure 4 shows the postprocessing of a test set. The
first line of the generated report provides statistics on
the effectiveness of the set with respect to a target
mutant. The mutant was killed by 8 inputs,
representing 18.6% of the set. The first revealing input
was the 12th in the set (indicated by the number in
brackets). Then, a detailed trace is provided: ‘D’
identifies revealing inputs, while ‘.’ denotes non-
revealing ones. Such reports proved quite useful for
analyzing the revealing power of test sets with respect
to specific faults. Also, the statistics were an indicator
of the quality of the database of mutants. It could be
checked whether a significant number of mutants were
killed by few inputs, even in large test sets. The
detailed trace was useful for identifying error bursts due
to memory effect.

Figures 5 and 6 provide two examples of
postprocessing launched by the closing session
program.

Figure 5 plots the evolution of the mutation scores
versus the number of executed inputs. The observed
evolution, a rapid growth followed by a sharp
slowdown, is typical. The test data rapidly uncover the
“easy” mutants during a first phase. Then, the
incremental gain becomes almost nil because the
remaining mutants are those that are difficult to kill by
the adopted test strategy. A change in the strategy can
be identified by stages in the plot (see, e.g., the
evolution observed at N=85 for test sets 2 and 3). Note
that if the score has not yet stabilized at the end of the
test set, or before a change in the strategy, this
probably means that the test size is insufficient. Hence,
the analysis of the plot may be interesting to determine
stopping criteria. The evolution of the mutation scores
also gives information on the comparative efficiency of
test sets (e.g., although the final scores are similar, test
set 1 turns out to be more efficient than the others).

Figure 6 shows information produced by the
SESAME mcov utility (named after tcov, a Unix
utility for analyzing structural coverage). Like tcov,
mcov annotates the source code with coverage
information. Figure 6 reports from experiments
involving three test sets. Each block of instructions in
the original source program is annotated by:
• The number of times the block was executed by

each test set. For example, Block 2 was

executed respectively 12, 10 and 6 times by
test sets 1, 2 and 3.

• The number of mutants generated for each line
of the block. For example, 12 mutants were
generated for the line “SUM = VAL1 + VAL2;”.

• Information on the mutants not killed by at
least one test set (report starting by ‘*’). For
each live mutant, the report consists of (i) the
mutant id and the list of non revealing sets,
(ii) the description of the mutation. For
example, in Block 3, the mutant with id 74
was not killed by any of the test sets. The
mutation replaced the MAX symbol by 65536.

The mcov utility may serve two purposes. First, it
may be used to check whether the mutants are
homogeneously spread over the source code. Second, it
facilitates the analysis of the live mutants. If the test
sets did not kill a number of mutants affecting the
same location, then there might be some common
causes.

Mutant killed by 8 inputs (12) 18.6%

...........D......D.D......DD......DD....D.

Figure 4. Example of test set postprocessing

Figure 5. Evolution of the mutation scores

....
#Block 2 : struct. cov. sets = 12 10 6
 12 SUM = VAL1 + VAL2;
 8 if SUM > MAX
#Block 3 : struct. cov. sets = 4 5 2
 8 SUM = MAX;
* ==> (74) 1 2 3
* SUM = 65536;
* ==> (76) 3
* SUM == MAX ;
....

Figure 6. Coverage analysis by mcov

2.3 Coupling SESAME with ATTOL

A transfer of SESAME to industrial partners
motivated the coupling with ATTOL. In an industrial
context, SESAME was intended to be used to assess
the quality of test sets, in addition to the usual
structural coverage assessment supplied by ATTOL.

ATTOL (now IBM Rational Test RealTime) is a
commercial tool for unit and integration testing. It is
based on a language (the ATTOL language) allowing
the specification of test plans (involving several test
scenarios). The ATTOL preprocessor generates a test
program from the plan. The test program is then
compiled and linked to the application under test, as
well as to the ATTOL runtime. The test execution
produces a trace file, which is analyzed by the ATTOL
postprocessor to issue a test report. While ATTOL is
usually run via its GUI, it can also be controlled in a
non interactive way via command lines.

The coupling with ATTOL did not require any
modification of the SESAME core modules. It only
impacted the external Shell scripts called by the mutant
runner. The corresponding effort was no greater than
the usual effort to tune SESAME to new experimental
settings. Specifically, the Shell scripts were modified
as follows:
• The preprocessing of a test set (here, a single

test plan may be considered) uses ATTOL to
perform a golden run with the original source
program. The ATTOL test report is then
filtered to remove timestamp information (date
of the report, etc.). This is intended to facilitate
comparison with the mutants: a mutant is not
killed if the filtered test reports are identical.

• For each mutant, the compilation/link program
uses the ATTOL preprocessor to build the
executable associating the mutant with the test
plan. SESAME’s standard mutant execution
program can then be used.

• The postprocessing of a test s e t uses the
ATTOL postprocessor to analyze the mutant
trace. The resulting report is then filtered before
comparison with the golden report.

• As the duration of a session may be long, the
closing session program has been enriched by a
small utility sending an E-mail to the operator
to signal the end of the experiments.

As can be seen, no specific difficulties arose during
the interfacing exercise.

3. Dependability research using SESAME

SESAME is potentially useful whenever there is a
need to perform some experimental assessment in the
presence of software development faults. However, the
use of mutations to emulate development faults raises
the controversial issue of the representativeness of this
fault model with respect to real faults. This issue was
the motivation for an empirical study involving both
real faults and SESAME-generated mutations, which
supplied positive results summarized in Section 3.1.
The two following sections report on work addressing
fault removal and fault tolerance issues. Section 3.2
reports on work that investigated a probabilistic testing
approach for fault removal. With SESAME support,
the fault revealing power of the so-called statistical
testing approach was assessed and compared to that of
other approaches. Section 3.3 introduces on-going
work related to fault tolerance in autonomous robots.
SESAME is used to inject development faults into the
decision functions of the robot, with the aim of
assessing the impact of the faults in the absence and
then the presence of fault tolerance mechanisms.

3.1. Mutations as a model for emulating
software development faults

The representativeness of the fault model is a
recurring concern in the framework of fault injection.
Specifically, the ability of mutations to emulate actual
development faults was investigated by our colleagues
Daran and Thévenod-Fosse in [7].

At the time of this study, some encouraging results
were already available from the testing community.
There was empirical evidence that test data generated to
reveal usual (1st order) mutations could reveal more
complex mutations [18] or even complex known
programming faults [10]. Also, [23] observed that
mutations could produce subtle erroneous behaviors
like: (i) turning a combinational function into a
sequential one, or (ii) producing intermittent failures
under unforeseeable conditions2. This yielded Daran
and Thévenod-Fosse to conjecture that the errors
(incorrect internal states) and failures (incorrect output
results) produced by mutations could be similar to
those produced by real faults. Taking the example of a
C program of about 1K lines of code, they performed a
detailed analysis of the errors produced by 12 real
faults and 24 mutations generated by SESAME. The
focus was on the mechanisms of run-time error
creation, masking and propagation up to failure
occurrence. Overall, the results involved 3730 recorded

2 In the dependability literature, such faults whose activation
pattern is not systematically reproducible are called elusive faults
[4]. It is well-known that most residual development faults in large
software systems are elusive.

errors (1458 errors produced by real faults and 2272 by
mutations). They supported a good representativeness
of mutations in terms of the errors produced:
• 85% of the errors produced by the mutations

were also produced by the real faults.
• At a finer level of analysis, the error flow

graphs were also found to be quite similar to
those induced by real faults. The similarities
manifested in identical flows after a possibly
different root error (which depends on the
specific fault activated), or in common
subflows resulting in the same effect on output
variables (with error cancellation, masking or
failure). Complex error behaviors were
observed.

• From a testing perspective, the consequence is
that it may be as difficult to reveal a mutation
as to reveal a real fault.

Hence, while mutations are not syntactically close
to real faults (whose correction usually impacts several
instructions, possibly spread over several instruction
blocks), it may be relevant to use them as a fault
model as long as the experimental assessment depends
on the representativeness of the errors. In particular,
mutation analysis should be adequate to assess the
revealing power of test sets.

3.2. Assessment of statistical testing for
fault removal

Statistical testing [23] is a probabilistic approach
for test generation that has been developed at LAAS
during the nineties. It aims to compensate for the
imperfect connection of common test selection criteria
with the faults to be revealed: the cases identified by a
criterion have to be exercised several times with
different random data. In this way, there is no need for
a perfect match between identified test cases and
revealing inputs. Statistical testing should not be
confused with operational testing, or with (blind)
random testing. Since the sampling profile is
determined based on a test criterion, it may have little
connection with actual usage. Also, it is usually very
different from a uniform profile over the input domain.

SESAME has supported ten years of
experimentation on statistical testing. Most of our case
studies were critical software developed by industrial
partners from the avionic, space and (civil and military)
nuclear domains. Very few (if any) real fault reports
were available to us, and in most cases the software
had already been subjected to a thorough validation
process. Hence, the experimented test methods could
not be assessed based on real faults alone, so it was
decided to use mutation analysis. The target
programming languages were as diverse as Assembler,
C, Pascal and LUSTRE. The size of the source code
ranged from about 100 lines of code to thousands.

Table 3 provides an overview of the experiments
performed with SESAME. Most of them are reported
in [24] with appropriate pointers to the original papers.
Experiments were performed on different categories of
test sets:
• Statistical test sets designed from structural or

functional criteria.
• Deterministic test sets designed from structural

criteria (test sets were manually selected to cover
the target criterion).

• Random test sets generated according to a uniform
profile over the input domain.

• Industrial test sets (deterministic).
The assessment involved the measurement of the

mutation score, the identification of the subsets of
mutants that were killed or not by the test sets, or the
evolution of the mutation score as a function of the test
size (for statistical and random test sets).

Language # prog. # mutants # test sets

C 11 26,324 173

Lustre 8 5,119 60

Pascal 2 249 22

Assembler 4 1,839 34

Table 3. Overview of SESAME case studies

We provide below some conclusions that were
drawn from the experiments:
• Random uniform testing turned out to be a poor

strategy, except for some very simple software
components. The analysis of the evolution of the
mutation scores showed that the inadequacy of the
uniform profiles could not be compensated by any
reasonable increase in the test sizes.

• There was no empirical evidence that deterministic
structural test sets were any more effective than
purely random ones, and this whatever the
stringency of the adopted criterion. This confirms
the tricky link between these criteria and the faults
they aim to track down.

• On the contrary, high mutation scores were
repeatedly observed for statistical testing. The
approach allowed us to increase significantly the
failure probability of programs, even with respect
to faults loosely connected with the criteria. To
illustrate the fault revealing power of statistical
testing, Table 4 shows results involving both real
faults and mutations. The target programs are an
industrial program (IND) and a student version
(STUD) developed from the same specification.
The statistical test sets (ST-Sets), each containing
441 inputs, are designed from a weak functional
criterion for Statechart models (the coverage of
basic states). Five ST-Sets have been generated to

study the reproducibility of results. One large
uniform test set (U-Set) is also provided for the
purpose of comparison.

• The comparison with industrial test sets, which
could be performed for some software units
coming from different industrial companies,
showed the higher efficiency of statistical testing.
In some cases, the industrial test sets were as
effective as the statistical ones, but longer
(Fig. 7.a). In the other cases, the industrial test
sets were shorter but supplied a lower score than
the statistical test sets truncated to the same length
(Fig. 7.b).

Today, statistical testing is no longer a research
object for us. However, it is routinely used in the
framework of our testing research. For example, [16]
has investigated the design of tests starting from partial
proofs. The proposed approach makes use of a
probabilistic generation of test data. It is also worth
noting that other authors have investigated a different
implementation of statistical testing [11] based on the
generation of combinatorial structures and on
randomized constraint solving. To compare their
approach to “standard” statistical testing, they studied
one of the C programs included in Table 3 and used
the SESAME database of mutants for this program.

Real faults Mutation scores
IND

1 fault
STUD

12 faults
IND

3756 mut.
STUD

2419 mut.

ST-Sets
(N=441)

Always
revealed

Always
revealed

[0.93,
0.961]

[0.998,
1.0]

U-Set
(N=5300)

Not
Revealed

5
revealed 0.582 0.743

Table 4. Revealing power of statistical test sets

3.3. Assessment of fault-tolerance in robot
planning

SESAME is currently used to provide fault injection in
the SAC3 project [17], which is investigating
techniques for tolerating development faults in the
decision mechanisms of critical autonomous robot
systems.
The focus is on fault tolerance techniques aiming at
improving reliability of planning mechanisms through
diversification of the models on which planning is
based. The efficiency and the performance of these fault
tolerance techniques is being evaluated through fault
injection into real robot software executed in a
simulation environment. The targeted system is an
autonomous rover whose mission includes taking
photographs at several geographic locations,
communicating with an orbiter during pre-determined
visibility windows, and returning to its starting point
within a fixed deadline. Fault injection is achieved by
mutation of the planning model.

3.3.1. Particularities regarding autonomy
Several aspects of autonomous systems complicate the
tasks of mutant execution and comparison.
• The asynchrony of the various subsystems of the

robot and the underlying operating system causes
nondeterminism in the experiments: task
scheduling differences between similar experiments
may degrade into task failures and possibly
unsatisfied goals, even in the absence of faults.
Several equivalent experiments must thus be carried
out in order to obtain a statistically representative
result.

• A particularity of autonomous systems is their
ability to adapt to different situations by virtue of
the solution space search embodied in their
decision mechanisms. Thorough testing of decision
mechanisms must therefore confront them with a
wide variety of situations. In the SAC experimental

3 French acronym for “Critical Autonomous Systems”.

0%

20%

40%

60%

80%

100%

0 20 40 60

mutation score

N 0%

20%

40%

60%

80%

100%

0 50 100
N

mutation score

(a) Prog1, 118 mutations (b) Prog2, 6150 mutations

Figure 7. Comparison with industrial test sets
statistical structural set
uniform random set
industrial set

framework, this is addressed by considering five
different missions (defined by different sets of
objectives) and four different environments (defined
by the number and the location of obstacles with
which the rover may be confronted), leading thus to
20 different execution contexts for each mutation.

• Contrary to more classic mutation experiments, the
result of an experiment cannot be easily
dichomotized as either “failed” or “successful”.
Indeed, an autonomous system is confronted to
partially unknown environments and situations,
and since some of its objectives may be difficult or
even impossible to achieve in a particular execution
context, the assessment of the results of a mission
must be graded into more than two levels. In the
SAC framework, the quality of the result of a given
experiment incorporates first the subset of goals
that have been successfully achieved, and second,
performance results such as the mission execution
time and the distance covered by the robot to
achieve its goals.

• The problem of equivalent mutants is exacerbated
in the non-deterministic context of autonomous
systems: even if two mutations lead to different
subsets of achieved goals or dissimilar performance
results, they might nevertheless be equivalent.
Detecting “true” equivalence is therefore not a
simple matter.

3.3.2. Implementation
Due to the impossibility of dichotomizing the results
of an experiment as “success” or “failure”, the
SESAME tool has not been used to execute the
mutants, but solely to inject faults in the planning
model. This model is written in the specific declarative
language of the IxTeT planner [12] considered in the
SAC project. It is composed of tasks described by
constraint relations on numerical and temporal
variables, and assertions (hold or event) on the system
attributes, which are the different variables that together
describe the system state. Figure 8 gives an example of
a task described in the IxTeT language.

task TAKE_PICTURE (?obj, ?x, ?y)(t_start, t_end){
 ?obj in OBJECTS;
 ?x in]-oo,+oo[; ?y in]-oo,+oo[;

 hold(AT_ROBOT_X():?x,(t_start,t_end));
 hold(AT_ROBOT_Y():?y,(t_start,t_end));
 hold(PTU_POSITION():downward,(t_start,t_end));

 event(PICTURE(?obj,?x,?y):(none,doing),t_start);
 hold(PICTURE(?obj,?x,?y):doing,(t_start, t_end));
 event(PICTURE(?obj,?x,?y):(doing,done),t_end);

 (t_end - t_start) in]0,60];
}nonPreemptive

Figure 8. Example of IxTeT task

The SESAME mutation tables were written after a
manual survey of the model syntax aimed at
(a) grouping similar and exchangeable elements, and
(b) reducing the size of the tables and the effort needed
to produce them. An extract of the mutation tables can
be found in Figure 9. It includes four main types of
substitution:
• Substitution of numerical values: each numerical

value is exchanged with members of a set of real
numbers that encompasses (a) all numerical
variables in all the tasks of the model, (b) a set of
specific values (such as 0, 1 or -1), and (c) a set of
randomly-selected values.

• Substitution of variables: since the scope of a
variable is limited to the task where it is defined,
numerical (resp. temporal) variables are exchanged
with all numerical (resp. temporal) variables of the
same task.

• Substitution of attribute values; attribute values are
exchanged with other possible values in the range
of the attribute. Due to the simplicity of SESAME,
a problem may arise when the ranges of different
attributes overlap since a value corresponding to
one attribute may be replaced by a value from the
range of a different attribute. However, such
mutants generate errors during compilation and are
thus discarded by SESAME before execution of the
experiments.

• Substitution of language operators: in addition to
classic numerical operators on temporal and
numerical values, the IxTeT language employs
specific operators, such as “nonPreemptive” that
indicates that the task being described cannot be
interrupted by the executive.

substitution of numerical values
«-oo» <---> «+oo», «0», «60», «1», «-1»,
 «-4», «26.3»

substitution of numerical and
temporal variables
«?obj» <---> «?x», «?y»
«t_start» <---> «t_end»

substitution of attribute values
«downward» <---> «straigth», «other»
«none» <---> «done», «doing»

substitution of operators
«nonPreemptive» <---> «latePreemptive», «»
«+» <---> «-», «*», «/»

Figure 9. Example of SESAME mutation table

Two other types of mutation have been implemented,
although not with the SESAME tool: first the removal
of a randomly selected constraint relation in the
planning model, second the addition of a syntactically
correct line, generated randomly from a lexicon of the
planning model.

Our preliminary mutation experiments are aimed at
evaluating the baseline resilience of a non-redundant
planner. The first results show a wide variety of
execution behaviors, from failure of the planner (crash,
hang, or timeout), to equivalent executions. Typically,
equivalent executions (and thus equivalent mutants)
can be found when the mutation relaxes a numeric or
temporal constraint, which may have no incidence on
the plan because of the intrinsic resilience of constraint
planning: the constraint may also be enforced in
another part of the model, or the modification may not
have sufficient impact to cause a plan failure.
Dissimilar executions include failed objectives (e.g.,
due to a faulty initialization, or a wrong execution
mode for a task), bad performance (e.g., due to a wrong
estimation of the distance between two locations), or
more complicated behavior, such as an increase in
system performance at the cost of some failed
objectives (e.g., caused by the impossibility to abort
movement tasks).

4. Conclusion

The design of SESAME was driven by a pragmatic
concern: to offer flexible support to experimental
research. This proved a successful approach, since the
tool has been used for fifteen years to tackle different
targets, with sometimes quite different research
objectives. During this period, the maintenance of the
tool was also facilitated by its design. The evolutions
mainly concerned the enrichment of the mutation tables
and of postprocessing utilities, which could easily be
added without affecting the core modules. Also, the
Pascal code of the early versions has been
automatically translated into C, to improve portability.

Transfer to industry was less successful. SESAME
was transferred to two partners, but it seems that the
experience did not go beyond R&D studies. While the
partners were convinced of the relevance of mutation
analysis, the manual detection of equivalent mutants
proved prohibitive. SESAME leaves open the
possibility of using external tools for the detection of
equivalence, but currently very few such tools are
available. For Fortran targets, the Equalizer module of
Mothra uses heuristics derived from compiler
optimization techniques [19]. The tool was
experimentally found to detect about 10% of the
equivalent mutants on 15 small programs, which is
quite helpful but far from sufficient from an industrial
viewpoint. More powerful detection approaches based
on constraint solving [21] or program slicing [13] are,
to our knowledge, at best implemented in proof-of-
concept prototypes.

For our current work on fault-tolerance in robot
planning, the detection of equivalent mutants is
specifically difficult, because of the peculiarities of the
target language and due to execution non-determinism.

Fortunately, other problems related to mutation
analysis are less specific, and may be addressed by
adapting existing solutions. For example, we cannot
afford a large number of mutants because each
individual mutant has to be run 60 times (there are 20
execution contexts, and 3 runs per context to study
non-determinism). To address this problem, we are
planning to use the principle of selective mutation [20]
combined with random sampling over the set of other
mutants. Determining an adequate selection strategy for
our target will of course require experimentation.

As regards the computational cost, we experienced
that the cost incurred by the separate compilation of
each mutant is negligible compared to the cost of the
experimental runs. We are currently investigating the
possibility of developing grid-based support for the
execution of SESAME mutants. In the context of our
current experiments on robot planning, this implies a
non-trivial porting exercise since the mutant execution
environment includes the whole robot software and a
simulator of its environment.

5. Acknowledgements

SESAME received financial support from the
Région Midi-Pyrénées. It received the innovation prize
from the Association pour le Développement de
l'Enseignement, de l'Économie et des Recherches de
Midi-Pyrénées. The coupling with ATTOL was funded
in part by Technicatome.

We would also like to mention the significant
contributions to the development and use of SESAME
of Pascale Thévenod-Fosse, Muriel Daran and
Christine Mazuet.

6. References

[1] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J-C. Fabre,
J-C. Laprie, E. Martins and D. Powell, “Fault injection for
dependability validation: a methodology and some
applications”, IEEE Trans. on Software Engineering,
Vol.16, no.2, pp.166-182, 1990.

[2] J. Arlat, J. Boué, Y. Crouzet, E. Jenn, J. Aidemark,
P. Folkesson, J. Karlsson, J. Ohlsson and M. Rimen,
“MEFISTO: a series of prototype tools for fault injection
into VHDL models”, in Fault injection techniques and
tools for embedded systems reliability evaluation, Kluwer
Academic Publishers, ISBN 1-4020-7589-8, pp.177-193,
2003.

[3] J. Arlat, J-C. Fabre, M. Rodriguez and F. Salles,
“MAFALDA: a series of prototype tools for the assessment
of real time COTS microkernel-based systems”, in Fault
injection techniques and tools for embedded systems
reliability evaluation, Kluwer Academic Publishers, ISBN
1-4020-7589-8, pp.141-156, 2003.

[4] A. Avizienis , J-C. Laprie, B. Randell and C. Landwehr,
“Basic Concepts and Taxonomy of Dependable and Secure
Computing”, IEEE Trans. on Dependable and Secure
Computing, vol. 1, no. 1, pp.11-33, 2004.

[5] P. Chevalley and P. Thévenod-Fosse, “A mutation
analysis tool for Java programs”, Int. Journal on Software
Tools for Technology Transfer (STTT), vol. 5, no. 1,
pp.90-103, 2003.

[6] Y. Crouzet, P. Thévenod-Fosse and H. Waeselynck,
“Validation du test du logiciel par injection de fautes:
l'outil SESAME”, in 11ème Colloque National de
Fiabilité et Maintenabilité, Arcachon, France, pp.551-559,
1998.

[7] M. Daran and P. Thévenod-Fosse, “Software error
analysis: a real case study involving real faults and
mutations”, International Symposium on Software
Testing and Analysis (ISSTA'96), San Diego, USA, ACM
Press, pp.158-171, 1996.

[8] M. Delamaro and J. Maldonado, “Proteum – A Tool for
the Assessment of Test Adequacy for C Programs”,
Conference on Performability in Computing Systems (PCS
96), New Brunswick, USA, pp. 79-95, 1996.

[9] R.A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on
test data selection: help for the practicing programmer”,
IEEE Computer, vol. 11, no. 4, pp. 34-41, 1978.

[10] R.A. DeMillo and A.P. Mathur, “On the use of software
artifacts to evaluate the effectiveness of mutation analysis
for detecting errors in production software”, Software
Engineering Research Center Report, Purdue University,
W. Lafayette, USA, 1994.

[11] A. Denise, M.-C. Gaudel and S-D. Gouraud, “A Generic
Method for Statistical Testing”, 15th IEEE International
Symposium on Software Reliability Engineering
(ISSRE'2004), Saint-Malo, France, IEEE CS Press, pp.25-
34, 2004

[12] M. Ghallab and H. Laruelle, “Representation and
Control in IxTeT, a Temporal Planner”, 2nd Int. Conf. on
Artificial Intelligence Planning Systems (AIPS-94),
Chicago, IL, USA, pp.61-67, AIAA Press, 1994.

[13] R. Hierons, M. Harman and S. Danicic, “Using
program slicing to assist in the detection of equivalent
mutants”, Software Testing, Verification and Reliability,
vol. 9, no. 4, pp. 233-262, 1999.

[14] K. Kanoun, Y. Crouzet, A. Kalakech, A. E. Rugina and
P. Rumeau, “Benchmarking the Dependability of Windows
and Linux using Postmark Workloads”, 16th Int. Symp. on

Software Reliability Engineering (ISSRE 2005), Chicago,
IL, USA, IEEE CS Press, pp.11-20, 2005.

[15] K. King and J. Offutt, “A Fortran Language System for
Mutation-based Software Testing”, Software Practice and
Experience, vol. 21, no. 7, pp. 685-718, 1991.

[16] G. Lussier and H. Waeselynck, “Deriving test sets
from partial proofs ”, 15th IEEE International Symposium
on Software Reliability Engineering (ISSRE'2004), Saint-
Malo, France, IEEE CS Press, pp. 14-24, 2004.

[17] B. Lussier, A. Lampe, R. Chatila, J. Guiochet,
F. Ingrand, M.-O. Killijian and D. Powell, “Fault Tolerance
in Autonomous Systems: How and How Much?” in 4th
IARP - IEEE/RAS - EURON Joint Workshop on Technical
Challenges for Dependable Robots in Human
Environments, Nagoya, Japan, 2005.

[18] J. Offutt, “The coupling effect: fact or fiction?”,
3rd Symposium on Testing, Analysis and Verification (TAV
3), Key West, USA, pp. 131-140, 1989.

[19] J. Offutt and M. Craft “Using Compiler Optimization
Techniques to Detect Equivalent Mutants”, Journal o f
Software Testing, Verification, and Reliability, vol.4, no.
3, pp.131-154, 1994.

[20] J. Offutt, A. Lee, G. Rothermel, R. H. Untch and
C. Zapf, “An Experimental Determination of Sufficient
Mutant Operators”, ACM Trans. on Software Engineering
Methodology, vol.5, no. 2, pp. 99-118, 1996.

[21] J. Offutt and J. Pan, “Automatically Detecting
Equivalent Mutants and Infeasible Paths”, Journal o f
Software Testing, Verification, and Reliability, vol 7, no.
3, pp.165-192, 1997.

[22] J. Offutt and R. Untch, “Mutation 2000: Uniting the
Orthogonal”, in Mutation 2000: Mutation Testing in the
Twentieth and the Twenty First Centuries, San Jose, CA,
pp. 45-55, 2000.

[23] P. Thévenod-Fosse, H. Waeselynck and Y. Crouzet,
“Software statistical testing”, in Predictably Dependable
Computing Systems, B. Randell, J-C. Laprie, H. Kopetz &
B. Littlewood (Eds), Springer Verlag, pp. 253-272, 1995.

[24] P. Thévenod-Fosse and H. Waeselynck, “Software
statistical testing based on structural and functional
criteria”, 11th International Software Quality Week
(QW'98), vol. II, San Francisco, USA, 1998

