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Abstract 
 
 
One of the main concerns in safety-critical software is to 
ensure sufficient reliability because proof of the absence 
of systematic failures has proved to be an unrealistic 
goal. Fault-tolerance (FT) is one method for improving 
reliability claims. It is reasonable to assume that some 
software FT techniques offer more protection than 
others, but the relative effectiveness of different software 
FT schemes remains unclear. We present the principles 
of a method to assess the effectiveness of FT using 
mutation analysis. The aim of this approach is to observe 
the power of FT directly and use this empirical process 
to evolve more powerful forms of FT. We also 
investigate an approach to FT that integrates data 
diversity (DD) assertions and TA. This work is part of a 
longer term goal to use FT in quantitative safety 
arguments for safety critical systems.  

1. Background 
 
Effective FT involves two aspects: Constructing an 
architecture that includes the necessary redundancy, and 
guaranteeing that this redundancy performs adequately. 
Developing FT for design faults in software requires the 
same procedure needed for other FT systems [1, 2]. 
Typical steps include: identify likely fault types and 

where they would cause erroneous states. Define the set 
of errors that would cause failures with severe effects. 
identify the FT strategy, including error detection, error 
confinement, preventing error propagation, error 
masking, damage assessment, diagnosis of the origin of 
the error, etc. Verify the FT effectiveness 
Two FT techniques of particular relevance in this paper 
are: Data diversity [9] and the theory of randomly testable 
functions presented by Lipton [6], a specific type of DD 
that admits a theoretical analysis of effectiveness. 

2. Problem addressed 
 
Our research is focused on the problem of detecting 
residual design errors that appear at execution time (i.e. 
after V&V) as systematic failures. The latency can be 
long in normal operation and only becomes apparent 
under specific conditions associated with particular 
combinations of inputs and internal system states. On-line 
diagnosis is the only technique available to mitigate 
against such residual design errors after analysis, design 
and testing. If software could be constructed to be correct 
by design then this would remove the need for tolerance 
of a large class of internal software faults (as opposed to 
software tolerance of hardware faults), but such a solution 
rarely exists. Even where it is possible in principle to use 
formal methods they can be expensive and require 
specialist expertise. In addition, software reliability is 
difficult to ensure with testing. It is well known that 
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software can rarely be verified fully using test methods of 
any kind. The software input space is often infinite in 
practice, which makes it impossible to test exhaustively.  
The long term thrust of our research is summarised by the 
question: is it possible to demonstrate significant 
improvements to the reliability of safety critical software 
demonstrably, using relatively straightforward diagnostic 
techniques? It is important that the techniques are not too 
complex to implement otherwise the cost will make them 
unattractive. 
Our long term research aim is to overcome the following 
problems: the lack of efficient guidance on how to build 
appropriate FT and the difficulty of assessing effective 
detection of design errors and reliability gains 
In addition, there are FT methodologies that are not used 
widely in the software community, yet may be highly 
effective. Without a method to assess effectiveness, the 
use of FT is intuitive at best, and there is little incentive 
for software engineers to use new techniques. The ability 
to perform quantitative assessment might  change practice 
significantly. 

This paper has a focus on DD, the use of redundancy 
at the data input space of a program. Various flavours of 
DD are available, although their use is rare in everyday 
software engineering practice. One idea to increase the 
effectiveness of FT is to use a combination of multiple 
diverse encoded redundancy techniques at the input space 
of a program. The attraction is that each different 
technique might be implemented separately, so keeping 
complexity down. If the different techniques trap different 
fault types, this provides a simple paradigm for increasing 
the effectiveness of FT in a program. 

3. An outline of an empirical approach to 
evaluation of fault tolerance, and its 
application on a case study 
 
In this section we present the overview of an empirical 
process under development for evaluation of software FT 
effectiveness. The process is general, in the sense that it 
could be used to assess any form of FT in principle. In 
this paper use it to evaluate a DD scheme and also 
compare this scheme against more traditional FT. 
The objectives of this section are: 
1) To describe the key aspects of a new empirical 

approach to evaluation of FT, including: 
a) the software case study 
b) the fault classification based on mutants 
c) the flavours of software FT. 
d) the DD models that were implemented in our 

case study. 
2) To describe the concept of diverse FT.  

3.1. Assessment strategy 
 
The central idea is simple: to be able to analyse the 
proportions of injected faults caught by various FT 
techniques. The architecture used to do this is shown in 
Figure 1.0 and uses the following components: 
(1) Component Under Test to which we apply FT. (2) 
DD, Traditional or a combination of the two FT that can 
be set as a postcondition, internal or postcondition. (3) A 
simulated fault injection based on mutant classification. 
This is done using a grapping function to control every 
mutant. (4) A test case generation tool to produce test sets 
(e.g., using statistical testing technique). 

 
Figure 1: Software FT assessment architecture. 

3.2. A case study using DARTS software 
 
Our fault tolerance is implemented and assessed using a 
safety-critical nuclear protection systems called DARTS. 
DARTS stands for Demonstration of Advanced 
Reliability Techniques for Safety Related Computer 
Systems. DARTS was implemented by the nuclear 
industry, using an industry strength development process. 
DARTS software is suitable for DD as its inputs are 
based on readings from sensors. Sensors typically provide 
noisy and imprecise data; therefore small modifications to 
those data would not adversely affect the application and 
can be suitable for implementing FT  [8, 12]. 
The DARTS software was written in the C language for a 
Nuclear Power Plant. The plant chosen for the DARTS 
example was a Steam Generating Heavy Water Reactor. 
The plant has an extensive range of protection systems 
based on parameters from both the nuclear and the 
conventional parts of the plant. 
The DARTS software takes inputs for neutron power, the 
pressure of steam in the steam drum and the steam drums 
water level, and produces output based on these three 
levels which informs the user whether the status is 
Normal, Warning or Trip. A warning occurs when the 
levels are within 2% of the trip levels, and a trip occurs if 
any of these parameters go outside predefined ranges. 
Further documentation of DARTS can be found in [14]. 



DARTS has three main software components, see Figure 
2: 
1) receive_mssg.c: Receives an input message 

containing data on Neutron Power, Steam Drum 
Pressure and Steam Drum Water Level and checks 
whether the message format is correct. 

2) get_values.c: Assesses the data values passed on by 
receive_mssg.c and calculates rates of change for 
Neutron, Power and Steam Drum Pressure. 

3) analyse_values.c: Decides on the plant status 
resulting from the data received and initial plant 
conditions. The resulting plant status is identified as 
normal, warning or trip. 

 
Figure 2: DARTS Architecture and the Position of 
Component Under Test assign_value are shown. 

3.3. Fault classification based on mutants 
 
Assessment is based on injection of faults simulated by 
mutation. We looked at various fault classification studies 
such as: Gray fault classification [13], Orthogonal Defect 
Classification [14], Shimeall and Leveson, [15] and fault 
classification based on mutants [16]. Due to the well 
defined fault classification and tool support we chose the 
latter.  
The mutation method is a fault-based testing strategy that 
measures the quality/adequacy of testing by examining 
whether a test set (test input data) can reveal certain types 
of faults. The mutation method generates simple syntactic 
deviations (mutants) of the original program. For 
example, a mutation system replaces an arithmetic 
operator (say + ) in the original program with other 
operators (such as -,  *, or / ), which is intended to 
represent the programmer using a wrong operator. If a test 
set can distinguish a mutant from the original program 
(i.e. produce different execution results), the mutant is 
said to be killed. Otherwise, the mutant is said to be alive. 
A mutant may remain alive because either it is equivalent 
to the original program (i.e. it is functionally identical to 
the original program although syntactically different) or 

the test set is inadequate to kill the mutant. If the mutant 
is an equivalent mutant, it would always produce the 
same output, hence it cannot be killed. If a test set is 
inadequate, it can be improved by adding test cases to kill 
the (non-equivalent) live mutant. A test set that can kill 
all non-equivalent mutants is said to be adequate [16].  

 
Figure 3: Fault Taxonomy Based On Mutants 

Mutation testing has a very well defined fault 
classification based on mutant operators. This set of 
mutation operators generates the syntactic modifications, 
which depend on the language of the program being 
tested, and the mutation system used for testing. Mutation 
operators either induce simple syntax changes based on 
errors that programmers typically make (such as using the 
wrong variable name), or are based on common testing 
goals (such as executing each branch). 
Agrawal and DeMillo [16] developed a fault 
classification based on mutant operators. This 
classification is divided into four categories: Statement 
mutations, Operator mutations, Variable mutations, 
Constant mutations. Full explanations, subcategories, and 
examples are described in [16] including the fault 
classification shown in Figure 3. 

3.4. Data diversity fault tolerance design 
 
The software FT architecture in this research uses DD, a 
complementary approach to design diversity.DD has been 
said to be orthogonal to design diversity [8].  Design 
diversity is the generation of different implementations 
(codes) from a common specification [3, 8]. DD is the 
creation of multiple versions of the same implementation 
where each version operates on different inputs that 
should produce the same expected results. The process of 
creating DD is called data re-expression [8]. Data re-
expression is an algorithm that produces equivalent data 
sets in this sense. 
The models of DD that are used in the design of our 
software FT strategy are [8, 10]: 
• Basic Data Re-expression Algorithm. 



• Re-expression Algorithm using Post-Execution 
Adjustment. 

• Re-expression Algorithm using Decomposition and 
Recombination. 

• Randomly Testable Functions (RTF). 

3.5. Multiple fault tolerance 
 
Different flavours of FT were designed to check critical 
computations at different levels in our case study. The 
different flavours of FT are shown in Figure 4. 

 
Figure 4: Diverse Fault Tolerance. 

There were three main flavours of FT in our research: 
TA, DD Assertions, and a combination of TA and DD 
assertions (TADD). TA was the main comparative model, 
although the comparisons were made between all the FT 
flavours (e.g. in terms of effective error trapping). The 
design methodology of assertions was based on studies of 
Executable Assertions [5] by Voas. These studies make 
some suggestions for the process of assertion design. 
Typical suggestions are that the assertions are defined 
from specifications, that they do not disturb execution 
time, and that in addition to verifying intermediate and 
final state (data), they should be also able to verify the 
correctness of control flow. Such suggestions can be 
developed more specifically e.g. a possible implication of 
aiming for low overheads might be to use assertions only 
for faults that produce catastrophic failures. However, 
these guidelines are far from specific in terms of the code 
required, for example, assertions can be inserted at 
different levels into code. 
. In our research we classify assertion designs in 3 
categories: 
1) Preconditions, implemented to verify the validity of 

input data at an entry software component, function 
or computation (instruction or group of instructions). 

2) Postconditions, implemented to verify the validity of 
output data at an exit software component or 
function. 

3) Internal/Point Invariants, implemented to verify the 
validity of input or output data at an entry or an exit 
software component, function or computation 
(instruction or group of instructions). 

4. Experimental work 
 
We have completed some initial experimental work and 
analysis of the resulting data. We use our evaluation 
approach to try to observe effective FT techniques, 
whether they are situation-dependent, whether different 
techniques catch different faults (and hence the potential 
benfits of using multiple diverse techniques), and other 
similar questions. 
The exact FT used is not claimed to be highly effective. 
The purpose of the experimentation was to demonstrate 
the feasibility of assessing any form of FT using our 
software tools to automate the process.  
In this section we will report how the effectiveness of our 
FT approach was observed in a safety-critical software 
component of the DARTS software called assign_value 
in Figure 2.  

4.1. Objectives 
 
1) Describe the TA and DD used  
2) Describe what they check in the state of the software. 
3) Describe where in the code they do it. 
4) Describe the different DD assertions used and make a 

comparison of their effectiveness with TA. 
5) Investigate questions such as: 

a) Which technique traps the most faults overall? 
b) Which types of faults is each technique best at 

trapping. 
c) Which of the techniques is ‘best’? 
d) Orthogonal fault trapping i.e. How much benefit 

do we get from using multiple techniques (i.e. is 
multiple FT a promising way forward)? 

4.2. Implementation issues 
 
Implementation include issues: 
• FT techniques used: 

ο Data Diversity Assertions . 
ο Traditional Assertions . 

• Where implemented in code. 
• Specific fault types based in Mutants Classification. 
• Test Sets definition using statistical test sets. 

4.3. Case study − component under test: 
assign_value 
 
The function assign_value() receives the inputs of three 
sensors and returns the average of the ones that are valid 
and also sufficiently close to each other. Such a function 
makes a critical decision on how and which inputs should 
be considered and which ignored to produce the output. 



The function is sufficiently complex to meet the goals of 
our experiment. It contains nested if-statements, the use 
of arrays, pointers, and it also performs some arithmetical 
operations (see Figure 5).  

 
Figure 5: Component Under Test: assign_value. 

4.4. A traditional assertion, TA 
 
The TA for the function assign_value simply checks 
whether the returned value, pt_value, lies within the range 
[min, max] of the input data, data[3], in which case it 
returns 1; and otherwise returns 0, which indicates a fault 
in the program, i.e. the consequence of mutantation in our 
experiments. The implementation of this TA is shown in 
Figure 6. 

 
Figure 6: Traditional Assertion Implementation. 

4.5. Data diversity 
 
The nature of the function under test, assign_value, 
admits appropriate use of DD on its input space. Any shift 
of the input data will preserve the relative distance among 
the points. 
The DD assertion for the function assign_value evaluates 
the original function assign_value with different sets of 
input data. All the three data in data[] are shifted by a 

‘random’ number. This shift is chosen so that data[] 
remains within the valid range. The degree of diversity is 
three, meaning that the original function is called three 
times, i.e. one with the data as received and also with two 
different shifts. The implementation of this DD is shown 
in Figure 7. 

 
Figure 7: Data Diversity implementation. 

4.6. The use of paths as part of the fault 
diagnostic 
 
The implementation of paths is another form of 
information redundancy that could be cost effective. The 
idea would be to give assertions the ability to compute the 
expected path for inputs, which can then be compared to 
the path taken in the original computation. It is based on 
the use of diagnostics that intercept a test and determine 
the path to be used. Of course this is what the program 
itself does, so the key is diversity between the way the 
program does it and the way the diagnostic does it. Of 
course, the fact that an input goes down the expected path 
does not mean the computation will be correct: 
1) It could still be an incorrect path (i.e. the design is 
simply wrong).  
2) Within a path, the program might fail to do the 
required computation for that path. 
However, the diagnostics discussed above provide some 
evidence that things are going well, and in principle DD 
techniques provide a good defence against 2 above i.e. 
within paths. Thus the overall idea is a combination of the 
path checking diagnostics and DD techniques. Informally, 
this seems to cover different ways a program can go 
wrong, and therefore it is plausible tha this is a promising 
combination. 

4.7. Test set design 
 
The test case generation for our experiments has been 
based on statistical testing (ST) [6, 7]. We developed a 
tool called DartsTCGenerator which automatically 
generates ST test sets for the component assign_value. 
Test case design was based on a Classification of 



Mutation, according to the type of code-statements 
affected: 
• non-conditional expressions – 10 types of Test Cases 

were used 
• conditional expressions in if-statements - 8 types of 

Test Cases were used 
We can see each of these test cases more clearly using 
assign_value's activity diagram shown in Figure 8. The 
test cases for each class are defined as follows. 
Mutations affecting non-conditional expressions (10 
cases): 
• When all input data in data[0..2] is valid,; 0:High, 

0:Med, 0:Low 
ο Low >=95% of High 
ο Low >=97.5% of Med 
ο Med >=97.5% of High 
ο Low, Med, High are very spread therefore TRIP 

event 
• When one invalid data[0..2] or inconsistent 

ο Low >=97.5% of Med 
ο Low <97.5% of Med 

• Low is invalid 
ο Med >=97.5% of High 
ο Med < 97.5% of High 
ο One or two data invalid, therefore, TRIP event 

• All data values are invalid 
ο TRIP event 

Mutations affecting the conditional expression in if-
statements, there are 8 cases where mutants take place in 
conditional statements, these are: 
• if ((statuses [low] == 0) && (statuses [med] == 0) 

&& (statuses [high] == 0)) 
ο if (data [low] >= (0.95 * data [high])) 
ο if (data [low] >= (0.975 * data [med])) 
ο if (data [med] >= (0.975 * data [high])) 
ο if ((statuses [low] == 0) && (statuses [med] == 

0)) 
ο if (data [low] >= (0.975 * data [med])) 
ο if ((statuses [high] == 0) && (statuses [med] 

== 0)) 
o if (data [med] >= (0.975 * data [high])) 

Another set of test cases was designed by incorporating 
the expected path into the above test set design. In terms 
of implementation, in each Case we included the path 
expected. This was done by setting a variable called path 
in every Case, this variable would take 0 or 1, 1 if we 
would like to take into account the path expected and 0 
otherwise. 
Our test case generation produces test sets in multiples of 
18. The DartsTCGenerator Tool produces one test set 
containing 18 test cases, so two sets contain 36 cases, 
three sets contain 54, and so on.  

 
Figure 8: assign_value's source code and Activity 

Diagram. 

4.8. Mutant Generation 
 
In this paper we report experimental work with two 
classes of mutants: Arithmetic Operator and Constant 
Operator mutation (see Section 3.3). Using mutation 
tools ProteumIM [17] and CreateMutants.py we generate 
mutants for these two classes. These mutants are shown 
in Tables 1, 2, and 3. To generate mutants of these classes 
Distribution of Mutants, the Mutants are grouped as 
“conditional” and “non-conditional” statements. 

MutantGroup No conditional Conditional Sum 
OAAN 33 15 48 
OALN 22 10 32 
OARN 66 30 96 
OCNG 0 8 8 
OEAA 81 0 81 
OEBA 27 0 27 
OESA 18 0 18 
OLAN 0 20 20 
OLBN 12 0 12 
OLLN 0 4 4 
OLNG 0 12 12 
OLRN 0 24 24 
OLSN 0 8 8 
ORAN 0 55 55 
ORBN 0 21 21 
ORLN 0 24 24 
ORRN 0 60 60 
ORSN 0 14 14 
Total 259 305 564 

Table 1: Arithmetic Operator. 
For example, Table 1 has 18 types of mutants of the class 
Arithmetic Operator. There were a Total of 564 mutants 
of this class of mutation, from which 7 types were applied 
to non conditional statements (259 mutants) and 14 types 
were applied to conditional statements (305 mutants). 
On the other hand, Table 2 has 3 types of mutants of the 
class Constant Operator mutation. There were a Total of 
622 mutants of this class of mutation, from which the 3 
types were applied to non conditional statements (306 



mutants) as well as the same 3 types were applied to 
conditional statements (316 mutants). 
In Table 3 we show a summary of all the mutants 
generated. There were a total of 1186 mutants of 
assign_value from which 622 where Constant Operator 
and 564 were Arithmetic Operator mutation. 
 

MutantGroup No conditional Conditional Sum 

Cccr 36 24 60 

Ccsr 93 102 195 

CRCR 177 190 367 

Total 306 316 622 

Table 2: Constant Operator . 
MutGroup Count 

Constant 622 
Operator 564 

Total 1186 

Table 3: Summary of Constant and Arithmetic Operator . 

4.9. Experimental Measurements 
 
We defined a set of metrics to use in the evaluation of FT 
effectiveness:  
 
1) TA0: The number of mutants detected by TA. 
2) DD0: The number of mutants detected by DD. 
3) TA1: The number of mutants undetected by TA. 
4) DD1: The number of mutants undetected by DD. 
5) A0: The number of mutants detected by TA and 

detected by DD. 
6) A1: The number of mutants not detected by TA and 

not detected by DD. 
7) A01: The number of mutants detected by TA and not 

detected by DD. 
8) A10: The number of mutants not detected by TA and 

detected by DD. 
9) The percentage of total number mutants detected by 

TA and DD. 
10) The percentage of total number mutants by group 

detected by TA and DD. 
11) The intersection of groups/subtypes of mutants 

detected by TA and DD. 

5. Some results 
 
In the following, we report some results that illustrate the 
facilties provided by our software tools.  

5.1. Comparison of fault tolerance effectiveness 
by mutant group 
 
A comparison of the effectiveness of TA and DD is 
shown in Figure 9, base on the two groups of mutants 
used: Constant and Operator. These two groups of 
mutants are represented by using two rings, see Figure 9. 

The ring on the left ( Rl  ) shows the results for Constant 
mutation. The ring on the right, represents Operator 

mutation ( Rr  ).  Both rings compare the effectiveness of 
error trapping by TA and DD. For example, let us 

consider  Rl  , where we generated 624 mutants. In Rl  , 
TA scored 60% effectiveness (red color ─ TA0) for the 
group of Constant mutation. DD scored 56% effective 
(blue color ─ DD0) for the same mutant group and 
number of mutants. 

In ring Rr  , 564 mutants were generated. TA scored 66% 
effectiveness (TA0) for Operator mutation and DD was 
71% effective (DD0). 
The FT was tested by executing every mutant against 
various sets of test cases. For example for the above 
result, 1112 test sets (20016 test cases) were used. Similar 
experiments were performed with 5, 100, and 556 test 
sets on which the results were the same. The use of paths 
(section 4.6) was included throughout. 

 
Figure 9: Comparison of the Assertions Effectiveness by 

Groups of Mutants. 

5.2. Results without the use of paths for constant 
mutation 
 
Figure 10 presents the effectiveness of TA and DD in 
Constant Mutation without using paths in the FT design. 
Constant Mutation occurred in non conditional 
statements as well as in conditional statements. The ring 

on the right ( RRc  ) represents Conditional Mutations 
while the ring on the left ( RLnc  ) non conditionals. 
There are mutants of type Cccr, Ccsr, and CRCR (see 

Figure 3) in both  RRc   and  RLnc . 



 

There were a total of 308 mutants generated for  RLnc : 
36 Cccr, 93 Ccsr, and 177 CRCR. In Cccr, the number of 
mutants trapped by TA0 were 32, the same occurred for 
DD0. For mutants Ccsr, TA0 trapped 76 mutants and 65 
by DD0. TA0 trapped 138 CRCR mutants and DD0 102. 

In RRc , a total of 316 mutants were generated of which: 
24 Cccr, 102 Ccsr, and 190 CRCR. In Cccr, the number 
of mutants trapped by TA0 were 18, the same occurred 
for DD0. For mutants Ccsr, TA0 trapped 40 mutants and 
45 by DD0. TA0 trapped 72 CRCR mutants and the same 
by DD0. 

 
Figure 10: Constant Mutation and no use of Paths. 

5.3. Results with the use of paths for constant 
mutation 
 

 
Figure 11: Constant Mutation and use of Paths. 

The results in the Figure 11 mirror those in Figure 10, but 
now the results include the effect of including paths 

analysis in the FT In the RLnc_p , for the three sub classes 
(Cccr, Ccsr and CRCR) there are no changes in the 
number of mutants trapped by both TA0 and DD0 with 
respect to the ones in which the use of paths was not 

included. Regarding  RRc_p , we observe that small 
variations occurred in Ccsr and CRCR. For example for 
Ccsr an increment of 6 mutants trapped by DD0 took 
place. Similar behaviour occurred for DD0 in CRCR, 
here the increment was of 12 mutants trapped. 

 

(The total of mutants was the same for  RLnc_p   and  
RRc_p : 308 and 316 respectively). 

5.4. Set of mutants type CRCR for both 
assertions (TA and DD) 
 
The set of mutants detected in non conditional and 
conditional statement by TA and DD for constant 
mutation CRCR is shown in Figures 12 and 13 
respectively. There were a total of 367 mutants generated 
from which 117 were non conditional and 190 were 
conditional statement (Table 2). In figures 12 and 13, the 
unique index number associated to each CRCR mutant is 
shown.  

 
Figure 12: Set of Mutants Type CRCR for both 

Assertions: non conditional Statement. 

 
Figure 13: Set of Mutants Type CRCR for both 

Assertions: conditional Statement. 

 In Figure 12, there were a total of 177 mutants generated 
in non conditional statement from which 139 were 
detected by TA and DD together. TA detected 138 
mutants (TA0) and DD detected 102 (DD0). There was 
an intersection of a set of mutants that were trapped by 



TA as well as by DD i.e. 101 mutants. There were 37 
mutants detected by TA but not detected by DD. Also 
there was 1 mutant that was detected by DD and not by 
TA. 
In Figure 13, there were a total of 190 mutants generated 
in conditional statement from which 84 were detected by 
TA and DD together. TA detected 72 mutants (TA0) and 
DD detected 84 (DD0). There was an intersection of a set 
of mutants that were trapped by TA as well as by DD, 72 
mutants. All of the mutants detected by TA were detected 
by DD. There were 12 mutants detected by DD but not 
detected by TA. 

6. Conclusions 
 
We have used DD techniques to approach the problem of 
systematic failures in safety-critical software. An 
assessment strategy demonstrated its ability to compare 
the effectiveness of these techniques with a traditional FT 
approach (TA). A set of metrics presented in Section 4.9 
were defined and used for the comparison. We have 
drawn the following straightforward conclusions. The DD 
and TA show some orthogonality (trapped different 
faults). Regarding the above finding, this was based on 
particular mutant groups. For example in Constant 
Mutation, we observed that these type of mutations were 
special in their ability to cause sporadic outbound 
memory access. For faults in conditional statements, DD 
were more effective than TA but this is easily explained 
in terms of the type of faults each flavour was designed to 
cover. We observed that DD was more effective at fault 
trapping that occurred on either if-statements or faults that 
occurred in non conditional statements on which the 
behaviour produced by these faults made the control flow 
change. This is because DD takes the computation out of 
the failure region. DD sometimes still failed to detect 
faults that changed the control flow of computations. 
When we introduced the calculation of expected paths in 
the design of DD, we were able to observe a slight 
increase in their effectiveness. As expected, confirming 
the expected path has been taken does not guarantee that 
the output of certain computation will be correct. The fact 
that the number of paths can grow massively as the size 
of a software development increases could be a serious 
limitation of the proposed use of path information in FT. 
However, one could argue that in safety-critical 
applications it is often possible to identify highly critical 
functions where complexity and the size of the function is 
relatively small, for example 50 to l00 LOC.  
It is not possible to draw general conclusions related to 
the relative effectiveness of traditional and data-diverse 
FT from the experiments conducted. However, in addition 
to demonstrating the feasibility of the experimental 
approach, our results do support the hypothesis that 

multiple diverse FT techniques can detect different types 
of faults, and it is therefore plausible that this is an 
approach that could be usefully employed to improve 
reliability.  

7. Future and related work 
 
To implement diverse FT in further components within 
DARTS as well as in different kinds of safety-critical 
software (e.g. smart sensors). Real software faults will be 
present permanently in the code but may produce highly 
transient failures. Simulated faults of a short or variable 
duration (via artificially controlled 
activation/deactivation) could be used to simulate 
transient failures from real faults. To integrate the set of 
tools developed in this research into a single tool with 
greater automation and structure before disseminating to 
other research groups.  To apply the same techniques 
using other fault classifications.  
 
The long term aim of our work is to develop an 
assessment approach that can be used in a formal case for 
improved reliability claims. The current techniques are a 
long way off that goal. However, there is already some 
scope for use of specific FT techniques in safety cases:  
Since the Lipton Randomisation Technique (LRT) 
provides means of computing reliability estimates on the 
basis of solid mathematical reasoning, the technique 
might be of great utility in safety cases. At present, we are 
working on the testing of embedded software in smart 
sensors used in safety-critical applications. We believe it 
would be very interesting to apply LRT in this type of 
applications. Extensions of Lipton Randomisation 
Technique are needed to widen the applicability of the 
technique. 
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