
Assessment of Data Diversity Methods for Software Fault Tolerance Based on

Mutation Analysis

Guillermo Gallardo
Ph.D. postgraduate, University of Bristol

E-mail: ggallard@cs.bris.ac.uk
Dr. John May

Ph.D., Director of the Safety Systems Research Centre (SSRC) at University of Bristol
E-mail: J.May@bristol.ac.uk

Dr. Julio C. Gallardo
Ph.D., Research Associate at the SSRC

E-mail: j.c.gallardo@bristol.ac.uk

Key Words: Mutation Testing, Software Fault Tolerance, Systematic Failures, Software Diagnostics, Safety-Critical
Software.

Abstract

One of the main concerns in safety-critical software is to
ensure sufficient reliability because proof of the absence
of systematic failures has proved to be an unrealistic
goal. Fault-tolerance (FT) is one method for improving
reliability claims. It is reasonable to assume that some
software FT techniques offer more protection than
others, but the relative effectiveness of different software
FT schemes remains unclear. We present the principles
of a method to assess the effectiveness of FT using
mutation analysis. The aim of this approach is to observe
the power of FT directly and use this empirical process
to evolve more powerful forms of FT. We also
investigate an approach to FT that integrates data
diversity (DD) assertions and TA. This work is part of a
longer term goal to use FT in quantitative safety
arguments for safety critical systems.

1. Background

Effective FT involves two aspects: Constructing an
architecture that includes the necessary redundancy, and
guaranteeing that this redundancy performs adequately.
Developing FT for design faults in software requires the
same procedure needed for other FT systems [1, 2].
Typical steps include: identify likely fault types and

where they would cause erroneous states. Define the set
of errors that would cause failures with severe effects.
identify the FT strategy, including error detection, error
confinement, preventing error propagation, error
masking, damage assessment, diagnosis of the origin of
the error, etc. Verify the FT effectiveness
Two FT techniques of particular relevance in this paper
are: Data diversity [9] and the theory of randomly testable
functions presented by Lipton [6], a specific type of DD
that admits a theoretical analysis of effectiveness.

2. Problem addressed

Our research is focused on the problem of detecting
residual design errors that appear at execution time (i.e.
after V&V) as systematic failures. The latency can be
long in normal operation and only becomes apparent
under specific conditions associated with particular
combinations of inputs and internal system states. On-line
diagnosis is the only technique available to mitigate
against such residual design errors after analysis, design
and testing. If software could be constructed to be correct
by design then this would remove the need for tolerance
of a large class of internal software faults (as opposed to
software tolerance of hardware faults), but such a solution
rarely exists. Even where it is possible in principle to use
formal methods they can be expensive and require
specialist expertise. In addition, software reliability is
difficult to ensure with testing. It is well known that

mailto:ggallard@cs.bris.ac.uk
mailto:J.May@bristol.ac.uk
mailto:j.c.gallardo@bristol.ac.uk

software can rarely be verified fully using test methods of
any kind. The software input space is often infinite in
practice, which makes it impossible to test exhaustively.
The long term thrust of our research is summarised by the
question: is it possible to demonstrate significant
improvements to the reliability of safety critical software
demonstrably, using relatively straightforward diagnostic
techniques? It is important that the techniques are not too
complex to implement otherwise the cost will make them
unattractive.
Our long term research aim is to overcome the following
problems: the lack of efficient guidance on how to build
appropriate FT and the difficulty of assessing effective
detection of design errors and reliability gains
In addition, there are FT methodologies that are not used
widely in the software community, yet may be highly
effective. Without a method to assess effectiveness, the
use of FT is intuitive at best, and there is little incentive
for software engineers to use new techniques. The ability
to perform quantitative assessment might change practice
significantly.

This paper has a focus on DD, the use of redundancy
at the data input space of a program. Various flavours of
DD are available, although their use is rare in everyday
software engineering practice. One idea to increase the
effectiveness of FT is to use a combination of multiple
diverse encoded redundancy techniques at the input space
of a program. The attraction is that each different
technique might be implemented separately, so keeping
complexity down. If the different techniques trap different
fault types, this provides a simple paradigm for increasing
the effectiveness of FT in a program.

3. An outline of an empirical approach to
evaluation of fault tolerance, and its
application on a case study

In this section we present the overview of an empirical
process under development for evaluation of software FT
effectiveness. The process is general, in the sense that it
could be used to assess any form of FT in principle. In
this paper use it to evaluate a DD scheme and also
compare this scheme against more traditional FT.
The objectives of this section are:
1) To describe the key aspects of a new empirical

approach to evaluation of FT, including:
a) the software case study
b) the fault classification based on mutants
c) the flavours of software FT.
d) the DD models that were implemented in our

case study.
2) To describe the concept of diverse FT.

3.1. Assessment strategy

The central idea is simple: to be able to analyse the
proportions of injected faults caught by various FT
techniques. The architecture used to do this is shown in
Figure 1.0 and uses the following components:
(1) Component Under Test to which we apply FT. (2)
DD, Traditional or a combination of the two FT that can
be set as a postcondition, internal or postcondition. (3) A
simulated fault injection based on mutant classification.
This is done using a grapping function to control every
mutant. (4) A test case generation tool to produce test sets
(e.g., using statistical testing technique).

Figure 1: Software FT assessment architecture.

3.2. A case study using DARTS software

Our fault tolerance is implemented and assessed using a
safety-critical nuclear protection systems called DARTS.
DARTS stands for Demonstration of Advanced
Reliability Techniques for Safety Related Computer
Systems. DARTS was implemented by the nuclear
industry, using an industry strength development process.
DARTS software is suitable for DD as its inputs are
based on readings from sensors. Sensors typically provide
noisy and imprecise data; therefore small modifications to
those data would not adversely affect the application and
can be suitable for implementing FT [8, 12].
The DARTS software was written in the C language for a
Nuclear Power Plant. The plant chosen for the DARTS
example was a Steam Generating Heavy Water Reactor.
The plant has an extensive range of protection systems
based on parameters from both the nuclear and the
conventional parts of the plant.
The DARTS software takes inputs for neutron power, the
pressure of steam in the steam drum and the steam drums
water level, and produces output based on these three
levels which informs the user whether the status is
Normal, Warning or Trip. A warning occurs when the
levels are within 2% of the trip levels, and a trip occurs if
any of these parameters go outside predefined ranges.
Further documentation of DARTS can be found in [14].

DARTS has three main software components, see Figure
2:
1) receive_mssg.c: Receives an input message

containing data on Neutron Power, Steam Drum
Pressure and Steam Drum Water Level and checks
whether the message format is correct.

2) get_values.c: Assesses the data values passed on by
receive_mssg.c and calculates rates of change for
Neutron, Power and Steam Drum Pressure.

3) analyse_values.c: Decides on the plant status
resulting from the data received and initial plant
conditions. The resulting plant status is identified as
normal, warning or trip.

Figure 2: DARTS Architecture and the Position of
Component Under Test assign_value are shown.

3.3. Fault classification based on mutants

Assessment is based on injection of faults simulated by
mutation. We looked at various fault classification studies
such as: Gray fault classification [13], Orthogonal Defect
Classification [14], Shimeall and Leveson, [15] and fault
classification based on mutants [16]. Due to the well
defined fault classification and tool support we chose the
latter.
The mutation method is a fault-based testing strategy that
measures the quality/adequacy of testing by examining
whether a test set (test input data) can reveal certain types
of faults. The mutation method generates simple syntactic
deviations (mutants) of the original program. For
example, a mutation system replaces an arithmetic
operator (say +) in the original program with other
operators (such as -, *, or /), which is intended to
represent the programmer using a wrong operator. If a test
set can distinguish a mutant from the original program
(i.e. produce different execution results), the mutant is
said to be killed. Otherwise, the mutant is said to be alive.
A mutant may remain alive because either it is equivalent
to the original program (i.e. it is functionally identical to
the original program although syntactically different) or

the test set is inadequate to kill the mutant. If the mutant
is an equivalent mutant, it would always produce the
same output, hence it cannot be killed. If a test set is
inadequate, it can be improved by adding test cases to kill
the (non-equivalent) live mutant. A test set that can kill
all non-equivalent mutants is said to be adequate [16].

Figure 3: Fault Taxonomy Based On Mutants

Mutation testing has a very well defined fault
classification based on mutant operators. This set of
mutation operators generates the syntactic modifications,
which depend on the language of the program being
tested, and the mutation system used for testing. Mutation
operators either induce simple syntax changes based on
errors that programmers typically make (such as using the
wrong variable name), or are based on common testing
goals (such as executing each branch).
Agrawal and DeMillo [16] developed a fault
classification based on mutant operators. This
classification is divided into four categories: Statement
mutations, Operator mutations, Variable mutations,
Constant mutations. Full explanations, subcategories, and
examples are described in [16] including the fault
classification shown in Figure 3.

3.4. Data diversity fault tolerance design

The software FT architecture in this research uses DD, a
complementary approach to design diversity.DD has been
said to be orthogonal to design diversity [8]. Design
diversity is the generation of different implementations
(codes) from a common specification [3, 8]. DD is the
creation of multiple versions of the same implementation
where each version operates on different inputs that
should produce the same expected results. The process of
creating DD is called data re-expression [8]. Data re-
expression is an algorithm that produces equivalent data
sets in this sense.
The models of DD that are used in the design of our
software FT strategy are [8, 10]:
• Basic Data Re-expression Algorithm.

• Re-expression Algorithm using Post-Execution
Adjustment.

• Re-expression Algorithm using Decomposition and
Recombination.

• Randomly Testable Functions (RTF).

3.5. Multiple fault tolerance

Different flavours of FT were designed to check critical
computations at different levels in our case study. The
different flavours of FT are shown in Figure 4.

Figure 4: Diverse Fault Tolerance.

There were three main flavours of FT in our research:
TA, DD Assertions, and a combination of TA and DD
assertions (TADD). TA was the main comparative model,
although the comparisons were made between all the FT
flavours (e.g. in terms of effective error trapping). The
design methodology of assertions was based on studies of
Executable Assertions [5] by Voas. These studies make
some suggestions for the process of assertion design.
Typical suggestions are that the assertions are defined
from specifications, that they do not disturb execution
time, and that in addition to verifying intermediate and
final state (data), they should be also able to verify the
correctness of control flow. Such suggestions can be
developed more specifically e.g. a possible implication of
aiming for low overheads might be to use assertions only
for faults that produce catastrophic failures. However,
these guidelines are far from specific in terms of the code
required, for example, assertions can be inserted at
different levels into code.
. In our research we classify assertion designs in 3
categories:
1) Preconditions, implemented to verify the validity of

input data at an entry software component, function
or computation (instruction or group of instructions).

2) Postconditions, implemented to verify the validity of
output data at an exit software component or
function.

3) Internal/Point Invariants, implemented to verify the
validity of input or output data at an entry or an exit
software component, function or computation
(instruction or group of instructions).

4. Experimental work

We have completed some initial experimental work and
analysis of the resulting data. We use our evaluation
approach to try to observe effective FT techniques,
whether they are situation-dependent, whether different
techniques catch different faults (and hence the potential
benfits of using multiple diverse techniques), and other
similar questions.
The exact FT used is not claimed to be highly effective.
The purpose of the experimentation was to demonstrate
the feasibility of assessing any form of FT using our
software tools to automate the process.
In this section we will report how the effectiveness of our
FT approach was observed in a safety-critical software
component of the DARTS software called assign_value
in Figure 2.

4.1. Objectives

1) Describe the TA and DD used
2) Describe what they check in the state of the software.
3) Describe where in the code they do it.
4) Describe the different DD assertions used and make a

comparison of their effectiveness with TA.
5) Investigate questions such as:

a) Which technique traps the most faults overall?
b) Which types of faults is each technique best at

trapping.
c) Which of the techniques is ‘best’?
d) Orthogonal fault trapping i.e. How much benefit

do we get from using multiple techniques (i.e. is
multiple FT a promising way forward)?

4.2. Implementation issues

Implementation include issues:
• FT techniques used:

ο Data Diversity Assertions .
ο Traditional Assertions .

• Where implemented in code.
• Specific fault types based in Mutants Classification.
• Test Sets definition using statistical test sets.

4.3. Case study − component under test:
assign_value

The function assign_value() receives the inputs of three
sensors and returns the average of the ones that are valid
and also sufficiently close to each other. Such a function
makes a critical decision on how and which inputs should
be considered and which ignored to produce the output.

The function is sufficiently complex to meet the goals of
our experiment. It contains nested if-statements, the use
of arrays, pointers, and it also performs some arithmetical
operations (see Figure 5).

Figure 5: Component Under Test: assign_value.

4.4. A traditional assertion, TA

The TA for the function assign_value simply checks
whether the returned value, pt_value, lies within the range
[min, max] of the input data, data[3], in which case it
returns 1; and otherwise returns 0, which indicates a fault
in the program, i.e. the consequence of mutantation in our
experiments. The implementation of this TA is shown in
Figure 6.

Figure 6: Traditional Assertion Implementation.

4.5. Data diversity

The nature of the function under test, assign_value,
admits appropriate use of DD on its input space. Any shift
of the input data will preserve the relative distance among
the points.
The DD assertion for the function assign_value evaluates
the original function assign_value with different sets of
input data. All the three data in data[] are shifted by a

‘random’ number. This shift is chosen so that data[]
remains within the valid range. The degree of diversity is
three, meaning that the original function is called three
times, i.e. one with the data as received and also with two
different shifts. The implementation of this DD is shown
in Figure 7.

Figure 7: Data Diversity implementation.

4.6. The use of paths as part of the fault
diagnostic

The implementation of paths is another form of
information redundancy that could be cost effective. The
idea would be to give assertions the ability to compute the
expected path for inputs, which can then be compared to
the path taken in the original computation. It is based on
the use of diagnostics that intercept a test and determine
the path to be used. Of course this is what the program
itself does, so the key is diversity between the way the
program does it and the way the diagnostic does it. Of
course, the fact that an input goes down the expected path
does not mean the computation will be correct:
1) It could still be an incorrect path (i.e. the design is
simply wrong).
2) Within a path, the program might fail to do the
required computation for that path.
However, the diagnostics discussed above provide some
evidence that things are going well, and in principle DD
techniques provide a good defence against 2 above i.e.
within paths. Thus the overall idea is a combination of the
path checking diagnostics and DD techniques. Informally,
this seems to cover different ways a program can go
wrong, and therefore it is plausible tha this is a promising
combination.

4.7. Test set design

The test case generation for our experiments has been
based on statistical testing (ST) [6, 7]. We developed a
tool called DartsTCGenerator which automatically
generates ST test sets for the component assign_value.
Test case design was based on a Classification of

Mutation, according to the type of code-statements
affected:
• non-conditional expressions – 10 types of Test Cases

were used
• conditional expressions in if-statements - 8 types of

Test Cases were used
We can see each of these test cases more clearly using
assign_value's activity diagram shown in Figure 8. The
test cases for each class are defined as follows.
Mutations affecting non-conditional expressions (10
cases):
• When all input data in data[0..2] is valid,; 0:High,

0:Med, 0:Low
ο Low >=95% of High
ο Low >=97.5% of Med
ο Med >=97.5% of High
ο Low, Med, High are very spread therefore TRIP

event
• When one invalid data[0..2] or inconsistent

ο Low >=97.5% of Med
ο Low <97.5% of Med

• Low is invalid
ο Med >=97.5% of High
ο Med < 97.5% of High
ο One or two data invalid, therefore, TRIP event

• All data values are invalid
ο TRIP event

Mutations affecting the conditional expression in if-
statements, there are 8 cases where mutants take place in
conditional statements, these are:
• if ((statuses [low] == 0) && (statuses [med] == 0)

&& (statuses [high] == 0))
ο if (data [low] >= (0.95 * data [high]))
ο if (data [low] >= (0.975 * data [med]))
ο if (data [med] >= (0.975 * data [high]))
ο if ((statuses [low] == 0) && (statuses [med] ==

0))
ο if (data [low] >= (0.975 * data [med]))
ο if ((statuses [high] == 0) && (statuses [med]

== 0))
o if (data [med] >= (0.975 * data [high]))

Another set of test cases was designed by incorporating
the expected path into the above test set design. In terms
of implementation, in each Case we included the path
expected. This was done by setting a variable called path
in every Case, this variable would take 0 or 1, 1 if we
would like to take into account the path expected and 0
otherwise.
Our test case generation produces test sets in multiples of
18. The DartsTCGenerator Tool produces one test set
containing 18 test cases, so two sets contain 36 cases,
three sets contain 54, and so on.

Figure 8: assign_value's source code and Activity

Diagram.

4.8. Mutant Generation

In this paper we report experimental work with two
classes of mutants: Arithmetic Operator and Constant
Operator mutation (see Section 3.3). Using mutation
tools ProteumIM [17] and CreateMutants.py we generate
mutants for these two classes. These mutants are shown
in Tables 1, 2, and 3. To generate mutants of these classes
Distribution of Mutants, the Mutants are grouped as
“conditional” and “non-conditional” statements.

MutantGroup No conditional Conditional Sum
OAAN 33 15 48
OALN 22 10 32
OARN 66 30 96
OCNG 0 8 8
OEAA 81 0 81
OEBA 27 0 27
OESA 18 0 18
OLAN 0 20 20
OLBN 12 0 12
OLLN 0 4 4
OLNG 0 12 12
OLRN 0 24 24
OLSN 0 8 8
ORAN 0 55 55
ORBN 0 21 21
ORLN 0 24 24
ORRN 0 60 60
ORSN 0 14 14
Total 259 305 564

Table 1: Arithmetic Operator.
For example, Table 1 has 18 types of mutants of the class
Arithmetic Operator. There were a Total of 564 mutants
of this class of mutation, from which 7 types were applied
to non conditional statements (259 mutants) and 14 types
were applied to conditional statements (305 mutants).
On the other hand, Table 2 has 3 types of mutants of the
class Constant Operator mutation. There were a Total of
622 mutants of this class of mutation, from which the 3
types were applied to non conditional statements (306

mutants) as well as the same 3 types were applied to
conditional statements (316 mutants).
In Table 3 we show a summary of all the mutants
generated. There were a total of 1186 mutants of
assign_value from which 622 where Constant Operator
and 564 were Arithmetic Operator mutation.

MutantGroup No conditional Conditional Sum

Cccr 36 24 60

Ccsr 93 102 195

CRCR 177 190 367

Total 306 316 622

Table 2: Constant Operator .
MutGroup Count

Constant 622
Operator 564

Total 1186

Table 3: Summary of Constant and Arithmetic Operator .

4.9. Experimental Measurements

We defined a set of metrics to use in the evaluation of FT
effectiveness:

1) TA0: The number of mutants detected by TA.
2) DD0: The number of mutants detected by DD.
3) TA1: The number of mutants undetected by TA.
4) DD1: The number of mutants undetected by DD.
5) A0: The number of mutants detected by TA and

detected by DD.
6) A1: The number of mutants not detected by TA and

not detected by DD.
7) A01: The number of mutants detected by TA and not

detected by DD.
8) A10: The number of mutants not detected by TA and

detected by DD.
9) The percentage of total number mutants detected by

TA and DD.
10) The percentage of total number mutants by group

detected by TA and DD.
11) The intersection of groups/subtypes of mutants

detected by TA and DD.

5. Some results

In the following, we report some results that illustrate the
facilties provided by our software tools.

5.1. Comparison of fault tolerance effectiveness
by mutant group

A comparison of the effectiveness of TA and DD is
shown in Figure 9, base on the two groups of mutants
used: Constant and Operator. These two groups of
mutants are represented by using two rings, see Figure 9.

The ring on the left (Rl) shows the results for Constant
mutation. The ring on the right, represents Operator

mutation (Rr). Both rings compare the effectiveness of
error trapping by TA and DD. For example, let us

consider Rl , where we generated 624 mutants. In Rl ,
TA scored 60% effectiveness (red color ─ TA0) for the
group of Constant mutation. DD scored 56% effective
(blue color ─ DD0) for the same mutant group and
number of mutants.

In ring Rr , 564 mutants were generated. TA scored 66%
effectiveness (TA0) for Operator mutation and DD was
71% effective (DD0).
The FT was tested by executing every mutant against
various sets of test cases. For example for the above
result, 1112 test sets (20016 test cases) were used. Similar
experiments were performed with 5, 100, and 556 test
sets on which the results were the same. The use of paths
(section 4.6) was included throughout.

Figure 9: Comparison of the Assertions Effectiveness by

Groups of Mutants.

5.2. Results without the use of paths for constant
mutation

Figure 10 presents the effectiveness of TA and DD in
Constant Mutation without using paths in the FT design.
Constant Mutation occurred in non conditional
statements as well as in conditional statements. The ring

on the right (RRc) represents Conditional Mutations
while the ring on the left (RLnc) non conditionals.
There are mutants of type Cccr, Ccsr, and CRCR (see

Figure 3) in both RRc and RLnc .

There were a total of 308 mutants generated for RLnc :
36 Cccr, 93 Ccsr, and 177 CRCR. In Cccr, the number of
mutants trapped by TA0 were 32, the same occurred for
DD0. For mutants Ccsr, TA0 trapped 76 mutants and 65
by DD0. TA0 trapped 138 CRCR mutants and DD0 102.

In RRc , a total of 316 mutants were generated of which:
24 Cccr, 102 Ccsr, and 190 CRCR. In Cccr, the number
of mutants trapped by TA0 were 18, the same occurred
for DD0. For mutants Ccsr, TA0 trapped 40 mutants and
45 by DD0. TA0 trapped 72 CRCR mutants and the same
by DD0.

Figure 10: Constant Mutation and no use of Paths.

5.3. Results with the use of paths for constant
mutation

Figure 11: Constant Mutation and use of Paths.

The results in the Figure 11 mirror those in Figure 10, but
now the results include the effect of including paths

analysis in the FT In the RLnc_p , for the three sub classes
(Cccr, Ccsr and CRCR) there are no changes in the
number of mutants trapped by both TA0 and DD0 with
respect to the ones in which the use of paths was not

included. Regarding RRc_p , we observe that small
variations occurred in Ccsr and CRCR. For example for
Ccsr an increment of 6 mutants trapped by DD0 took
place. Similar behaviour occurred for DD0 in CRCR,
here the increment was of 12 mutants trapped.

(The total of mutants was the same for RLnc_p and
RRc_p : 308 and 316 respectively).

5.4. Set of mutants type CRCR for both
assertions (TA and DD)

The set of mutants detected in non conditional and
conditional statement by TA and DD for constant
mutation CRCR is shown in Figures 12 and 13
respectively. There were a total of 367 mutants generated
from which 117 were non conditional and 190 were
conditional statement (Table 2). In figures 12 and 13, the
unique index number associated to each CRCR mutant is
shown.

Figure 12: Set of Mutants Type CRCR for both

Assertions: non conditional Statement.

Figure 13: Set of Mutants Type CRCR for both

Assertions: conditional Statement.

 In Figure 12, there were a total of 177 mutants generated
in non conditional statement from which 139 were
detected by TA and DD together. TA detected 138
mutants (TA0) and DD detected 102 (DD0). There was
an intersection of a set of mutants that were trapped by

TA as well as by DD i.e. 101 mutants. There were 37
mutants detected by TA but not detected by DD. Also
there was 1 mutant that was detected by DD and not by
TA.
In Figure 13, there were a total of 190 mutants generated
in conditional statement from which 84 were detected by
TA and DD together. TA detected 72 mutants (TA0) and
DD detected 84 (DD0). There was an intersection of a set
of mutants that were trapped by TA as well as by DD, 72
mutants. All of the mutants detected by TA were detected
by DD. There were 12 mutants detected by DD but not
detected by TA.

6. Conclusions

We have used DD techniques to approach the problem of
systematic failures in safety-critical software. An
assessment strategy demonstrated its ability to compare
the effectiveness of these techniques with a traditional FT
approach (TA). A set of metrics presented in Section 4.9
were defined and used for the comparison. We have
drawn the following straightforward conclusions. The DD
and TA show some orthogonality (trapped different
faults). Regarding the above finding, this was based on
particular mutant groups. For example in Constant
Mutation, we observed that these type of mutations were
special in their ability to cause sporadic outbound
memory access. For faults in conditional statements, DD
were more effective than TA but this is easily explained
in terms of the type of faults each flavour was designed to
cover. We observed that DD was more effective at fault
trapping that occurred on either if-statements or faults that
occurred in non conditional statements on which the
behaviour produced by these faults made the control flow
change. This is because DD takes the computation out of
the failure region. DD sometimes still failed to detect
faults that changed the control flow of computations.
When we introduced the calculation of expected paths in
the design of DD, we were able to observe a slight
increase in their effectiveness. As expected, confirming
the expected path has been taken does not guarantee that
the output of certain computation will be correct. The fact
that the number of paths can grow massively as the size
of a software development increases could be a serious
limitation of the proposed use of path information in FT.
However, one could argue that in safety-critical
applications it is often possible to identify highly critical
functions where complexity and the size of the function is
relatively small, for example 50 to l00 LOC.
It is not possible to draw general conclusions related to
the relative effectiveness of traditional and data-diverse
FT from the experiments conducted. However, in addition
to demonstrating the feasibility of the experimental
approach, our results do support the hypothesis that

multiple diverse FT techniques can detect different types
of faults, and it is therefore plausible that this is an
approach that could be usefully employed to improve
reliability.

7. Future and related work

To implement diverse FT in further components within
DARTS as well as in different kinds of safety-critical
software (e.g. smart sensors). Real software faults will be
present permanently in the code but may produce highly
transient failures. Simulated faults of a short or variable
duration (via artificially controlled
activation/deactivation) could be used to simulate
transient failures from real faults. To integrate the set of
tools developed in this research into a single tool with
greater automation and structure before disseminating to
other research groups. To apply the same techniques
using other fault classifications.

The long term aim of our work is to develop an
assessment approach that can be used in a formal case for
improved reliability claims. The current techniques are a
long way off that goal. However, there is already some
scope for use of specific FT techniques in safety cases:
Since the Lipton Randomisation Technique (LRT)
provides means of computing reliability estimates on the
basis of solid mathematical reasoning, the technique
might be of great utility in safety cases. At present, we are
working on the testing of embedded software in smart
sensors used in safety-critical applications. We believe it
would be very interesting to apply LRT in this type of
applications. Extensions of Lipton Randomisation
Technique are needed to widen the applicability of the
technique.

8. References

1. Pradhan, D.K., Fault-Tolerant Computer System

Design. 2003: Computer Science Press.
2. Strigini, L., Fault Tolerance Against Design

Faults; Dependable Computing Systems. 2004,
A. Zomaya and H. Diab, Wiley.

3. Avizienis, A. and K. JPJ, Fault Tolerance by
Design Diversity: Concepts and Experiments.
IEEE Computer, 1984: p. 67-80.

4. Voas, B.A.M.a.J.M., Programming with
Assertions: A Prospectus. IEEE Computer
Society, IT Professional, 2004.
September/October: p. 53-59.

5. Chen, L., J. May, and G. Hughes, Assessment of
the Benefit of Redundant Systems. Computer
Safety, Reliability and Security, 21st

International Conference, SAFECOMP, Catania,
Italy, 2002. 2434.

6. J. May, M.P., S. Kubal, J. Gallardo, A case For
New Statistical Software Testing Models.
RAMS, 2006.

7. Kuball, S., J. Gallardo, and J. May, Application
of Statistical Testing to Smart Sensors. RAMS,
2006.

8. Ammann, P.E. and J.C. Knight, Data Diversity:
An Approach to Software Fault Tolerance. IEEE
Transactions on Computers, 1988. 37(4): p. 418-
425.

9. Oh, N., S. Mitra, and E.J.M.F. IEEE, ED4I:
Error Detection by Diverse Data and Duplicated
Instructions. IEEE TRANSACTIONS ON
COMPUTERS, 2002. 51(2): p. 180-199.

10. Lipton, R.J., New Dirrections in Testing.
DIMACS Series in Discrete Methematics and
Theoretical Computer Science, 1991. 2.

11. Blum, M. and S. Kanna, Designing Programs
That Check their Work. In 21st ACM
Symposium on the Theory of Computing, 1989:
p. 86-97.

12. Quirk W.J., DARTS-Customer Functional
Requirements for the Protection System to be
used as the DARTS-032-HAR-160190-G. 1991.

13. Gray, J. Why do computers stop and what can be
done about it? in Proc. 5th Symposium on
Reliability in Distributed Software and Database
Systems. 1986. Los Angeles, CA, January.

14. Chillarege, R., Orthogonal Defect Classification,
in Handbook of Software Reliability
Engineering. 1995, IEEE computer Society
Press, McGrow-Hill.

15. Shimeall, T.J. and N.G. Leveson, An Empirical-
Comparison of Software Fault Tolerance and
Fault Elimination. IEEE Transactions on
Software Engineering, 1991. 17(2): p. 173-182.

16. DeMillo, R.A., et al. An extended overview of
the Mothra software testing environment. 1988.

17. Delamaro, M.E., J.C. Maldonado, and A.P.
Mathur, Interface Mutation: An Approach for
Integration Testing. IEEE Transactions on
Software Engineering, 2001. 27(3): p. 228-247.

